Building Distributed and Mobile Applications with IMC

Lorenzo Bettini

Dipartimento di Sistemi e Informatica Dipartimento di Informatica
Universita di Firenze Universita di Torino
http://www.lorenzobettini.it

Miniscuola WOA, Sept. 2007

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 1/55

© Motivations

© The IMC Framework
@ Protocols

@ Topology

@ Mobility

© Implementing D1 in IMC

@ Conclusions

Lorenzo Bettini (DSIOFI A DIQTO)

Building Applications with IMC

N

Implementing Distributed Applications & Code Mobility

@ Java provides useful means for implementing distributed applications:

and code mobility:

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 3 /55

Implementing Distributed Applications & Code Mobility

@ Java provides useful means for implementing distributed applications:
» Java network library
» language synchronization features
and code mobility:

> object serialization
» dynamic class loading

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 3 /55

Implementing Distributed Applications & Code Mobility

@ Java provides useful means for implementing distributed applications:

» Java network library
» language synchronization features

and code mobility:

> object serialization
» dynamic class loading

@ These mechanisms are low-level

» Most Java-based distributed and mobile systems re-implement from
scratch components for distribution and mobility

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 3 /55

IMC - Implementing Mobile Calculi

@ Is a middleware/framework for implementing distributed and mobile
code run-time systems
@ Aims at simplifying the implementation of distributed mobile code
applications:
> is based on recurrent standard mechanisms and patterns
> permits concentrating on the features that are specific of a particular
language
> can be easily extended/customized to fit language-specific requirements
@ Provides components for
> Network topology
» Communication protocols
» Code mobility
@ We have used IMC to implement run-time systems for some mobile
and distributed calculi (e.g., JDPI, KLAVA, etc.).

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 4 /55

The MIKADO project

The IMC framework is being built within an European project (EU-FET)
on Global Computing

Calculi for Mobility

@ The main intent is to investigate new mobile code calculi linguistic
features:

The meta theory
Provide prototype implementations

One of the tasks of the project was to build a framework for developing
the run-time systems for mobile code languages.

Lorenzo Bettini (DSI@FI A DI@TO)

Building Applications with IMC

Miniscuola WOA, Sept. 2007 5 /55

Protocols

@ Primitives for implementing specific protocols

> low level protocols (protocol layers)
> high level protocols (protocol states)

@ Build a protocol starting from small components
@ Make the components re-usable:

» the components are abstract and independent from specific
communication layers.

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 6 /55

Network Topology

@ Primitives for connection and disconnection (both physical and
logical)
@ Node creation and deletion

o Keeps track of the topology of the network

> flat
» hierarchical

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 7 /55

Mobility

@ Make code mobility transparent to the programmer
@ All issues are dealt with by the package:

» code collecting, marshalling
» code dispatch
» dynamic loading of code received from a remote site

@ Provide abstract interfaces and implementations for Java byte-code
mobility

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 8 /55

Network protocols...

e Each network protocol is viewed as an aggregation of protocol states:
> a high-level communication protocol is described as a state automaton
@ Each protocol state is implemented:

» by extending the ProtocolState abstract class
» by providing the implementation for the method enter, which returns
the next state to execute.

@ The Protocol class:

> aggregates the protocol states
> provides a template method (start) that will execute each state at a
time

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 9 /55

Marshalers and UnMarshalers

@ Specialized streams: Marshaler and an UnMarshaler to write/read
from the actual communication layer.

@ They provide means to write/read any primitive data type (inherited
from DataOutput and Datalnput).

@ They deal with code mobility (relying on the mobility sub-package).

public interface Marshaler extends
DataOutput, Closeable, Flushable, MigratingCodeHandler {
void writeStringLine(String s) throws |OException;
void writeReference(Serializable o) throws |OException;
void writeMigratingCode(MigratingCode code) throws IOException,
MigrationUnsupported;
void writeMigratingPacket(MigratingPacket packet) throws IOException;

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 10 / 55

Protocol layers

@ The data in the streams can be “pre-processed” by some customized
protocol layers

@ Each protocol layer takes care of the shape of messages (low-level
protocol)

@ These layers are then composed into a ProtocolStack that ensures
the order of preprocessing passing through all the layers in the stack.

remove
"PUT:"

Layer x

add

remove
"GET:"

seqnum

Layery

add
segnum+1

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 11 / 55

Using a ProtocolStack

Writing
Marshaler m = protocolStack.createMarshaler();

m.setMigratingCodeFactory(new JavaByteCodeMigratingCodeFactory());
m.writeStringLine("obj");

m.writelnt(obj.size());

m.writeMigratingCode(obj);

protocolStack.releaseMarshaler(m);

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC

Miniscuola WOA, Sept. 2007 12 / 55

Using a ProtocolStack

Writing

Marshaler m = protocolStack.createMarshaler();
m.setMigratingCodeFactory(new JavaByteCodeMigratingCodeFactory());
m.writeStringLine("obj");

m.writelnt(obj.size());

m.writeMigratingCode(obj);

protocolStack.releaseMarshaler(m);

Reading

UnMarshaler u = protocolStack.createUnMarshaler();
u.setMigratingCodeFactory(new JavaByteCodeMigratingCodeFactory());
s = u.readStringLine();

i = u.readlInt();

obj = u.readMigratingCode();

protocolStack.releaseUnMarshaler(u);

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 12 / 55

How layers work
@ When a marshaler is created, a new “communication” is started
(using the underlying session);
@ The headers (of the low-level protocol layers) are created;

@ The contents written using the marshaler can be buffered (e.g., for
UDP, into an UDP packet);

@ When the marshaler is released the buffer is actually flushed (e.g., for
UDP, the packet is actually sent).

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC

Miniscuola WOA, Sept. 2007 13 / 55

A customized layer

The following specialized protocol layer removes a header from the input

that consists of the line "IN"; it also adds a header to the output that
consists of the line "OUT":

public class OutlnLayer extends ProtocolLayer {
protected Marshaler doCreateMarshaler(Marshaler marshaler)
throws ProtocolException {
marshaler.writeStringLine("0UT");
return marshaler;

}

protected UnMarshaler doCreateUnMarshaler(UnMarshaler unMarshaler)
throws ProtocolException {
String header = unMarshaler.readStringLine();
if ('header.equals("IN"))

throw new ProtocolException("wrong header: " + header);
return unMarshaler;

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC

Miniscuola WOA, Sept. 2007 14 / 55

Tunneling

A specialized subclass, TunnelProtocolLayer is provided that permits to
“tunnel” a protocol layer into another (high level) protocol: e.g.,
encapsulate a message into HTTP requests and responses.

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 15 / 55

Tunneling

Welcome remove Hello
/ \HNW

OutinLayer

OUT:Welcome add \ / / \remove IN:Hello

ouT: seqnum

Sequence layer
add
20UT:Welcome seqnum+l /——\ 1IN:Hello

<!DOCTYPE HTML ...> HTTP tunnel layer GET 1IN:Hello HTTP/1.1
<HTML>

<BODY>
<HEAD></HEAD>

20UT:Welcome
</BODY>
</HTML>

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 16 / 55

Protocol States

A high level protocol can be described as a state automaton.

The protocols package provides features to implement protocol states
and compose them in an automaton.

Lorenzo Bettini (DSI@FI A DI@TO)

Building Applications with IMC Miniscuola WOA, Sept. 2007 17 / 55

The class Protocol

A collection of protocol states and a reference to a protocol stack:

Lorenzo Bettini (DSI@FI A DI@TO)

— 0 0 0 +~0 = T

=0 o ~O»

remove
header

Layer x
add remove
header header
Layery
add \ / / \ remove
header header
Layer z

add
header

Building Applications with IMC

Miniscuola WOA, Sept. 2007

18 / 55

State B

I A
IdLayer

S A

e B W
TCPLayer

DA

Communication Protocols: an example

I A
IdLayer

U a—

e B W
TCPLayer

—

v

Lorenzo Bettini (DSI@FI A DI@TO)

Building Applications with IMC

Miniscuola WOA, Sept. 2007

19 /55

State B

I A
IdLayer

S A

e B W
TCPLayer

DA

Communication Protocols: an example

I A
IdLayer

U a—

e B W
TCPLayer

—

v

Lorenzo Bettini (DSI@FI A DI@TO)

Building Applications with IMC

Miniscuola WOA, Sept. 2007

19 /55

State B

I A
IdLayer

S A

e B W
TCPLayer

DA

Communication Protocols: an example

I A
IdLayer

U a—

e B W
TCPLayer

—

v

Lorenzo Bettini (DSI@FI A DI@TO)

Building Applications with IMC

Miniscuola WOA, Sept. 2007

19 /55

State B

I A
IdLayer

S A

e B W
TCPLayer

DA

Communication Protocols: an example

I A
IdLayer

U a—

e B W
TCPLayer

—

v

Lorenzo Bettini (DSI@FI A DI@TO)

Building Applications with IMC

Miniscuola WOA, Sept. 2007

19 /55

State A State B

I A
IdLayer
U a—
e B W
TCPLayer

—

Communication Protocols: an example

I A
IdLayer
U a—
e B W
TCPLayer

—

v

Lorenzo Bettini (DSI@FI A DI@TO)

Building Applications with IMC

Miniscuola WOA, Sept. 2007

19 /55

Communication Protocols: an example

State A State B

B A B A
IdLayer IdLayer
S A S A
= @\ =
TCPLayer - TCPLayer
A A

v

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 19 / 55

Communication Protocols: an example

State A State B

I A I A
IdLayer IdLayer
S A S A
e B W e B W
TCPLayer TCPLayer
A A

v

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 19 / 55

Communication Protocols: an example

State A State B ™~

I A I A
IdLayer IdLayer
S A S A
e B W e B W
TCPLayer TCPLayer
A A

v

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 19 / 55

Communication Protocols: an example

State A State B

I A I A
IdLayer IdLayer
S A S A
e B W e B W
TCPLayer TCPLayer
A A

v

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 19 / 55

Communication Protocols: an example

State A State B

B A B A
IdLayer IdLayer
S A S A
= @\ =
TCPLayer - TCPLayer
A A

v

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 19 / 55

State A State B

I A
IdLayer
U a—
e B W
TCPLayer

—

Communication Protocols: an example

I A
IdLayer
U a—
e B W
TCPLayer

—

v

Lorenzo Bettini (DSI@FI A DI@TO)

Building Applications with IMC

Miniscuola WOA, Sept. 2007

19 /55

State A State B

I A
IdLayer
U a—
e B W
TCPLayer

—

Communication Protocols: an example

I A
IdLayer
U a—
e B W
TCPLayer

—

v

Lorenzo Bettini (DSI@FI A DI@TO)

Building Applications with IMC

Miniscuola WOA, Sept. 2007

19 /55

State A State B

I A
IdLayer
U a—
e B W
TCPLayer

—

Communication Protocols: an example

I A
IdLayer
U a—
e B W
TCPLayer

—

v

Lorenzo Bettini (DSI@FI A DI@TO)

Building Applications with IMC

Miniscuola WOA, Sept. 2007

19 /55

IdLayer

S A
e B W
TCPLayer

—

Communication Protocols: an example

=] sta
I A

>

I A
IdLayer
U a—
e B W
TCPLayer

—

v

Lorenzo Bettini (DSI@FI A DI@TO)

Building Applications with IMC

Miniscuola WOA, Sept. 2007

19 /55

State B

I A
IdLayer

S A

e B W
TCPLayer

DA

Communication Protocols: an example

I A
IdLayer

U a—

e B W
TCPLayer

—

v

Lorenzo Bettini (DSI@FI A DI@TO)

Building Applications with IMC

Miniscuola WOA, Sept. 2007

19 /55

State B

I A
IdLayer

S A
e B W
HtmlLayer
S A
e A
TCPLayer
s

Communication Protocols: an example

I A
IdLayer

S A
e B W
HtmlLayer
S A
e A
TCPLayer

—

v

Lorenzo Bettini (DSI@FI A DI@TO)

Building Applications with IMC

Miniscuola WOA, Sept. 2007

19 /55

State B

I A
IdLayer

S A
e B W
HtmlLayer
S A
e A
TCPLayer
s

Communication Protocols: an example

I A
IdLayer

S A
e B W
HtmlLayer
S A
e A
TCPLayer

—

v

Lorenzo Bettini (DSI@FI A DI@TO)

Building Applications with IMC

Miniscuola WOA, Sept. 2007

19 /55

State B

I A
IdLayer

S A
e B W
HtmlLayer
S A
e A
TCPLayer
s

Communication Protocols: an example

I A
IdLayer

S A
e B W
HtmlLayer
S A
e A
TCPLayer

—

v

Lorenzo Bettini (DSI@FI A DI@TO)

Building Applications with IMC

Miniscuola WOA, Sept. 2007

19 /55

State B

I A
IdLayer

S A
e B W
HtmlLayer
S A
e A
TCPLayer
s

Communication Protocols: an example

I A
IdLayer

S A
e B W
HtmlLayer
S A
e A
TCPLayer

—

v

Lorenzo Bettini (DSI@FI A DI@TO)

Building Applications with IMC

Miniscuola WOA, Sept. 2007

19 /55

State B

I A
IdLayer

S A
e B W
HtmlLayer
S A
e A
TCPLayer
s

Communication Protocols: an example

I A
IdLayer

S A
e B W
HtmlLayer
S A
e A
TCPLayer

—

v

Lorenzo Bettini (DSI@FI A DI@TO)

Building Applications with IMC

Miniscuola WOA, Sept. 2007

19 /55

State A State B

I A
IdLayer

S A
e B W
HtmlLayer
S A
e A
TCPLayer

—

Communication Protocols: an example

I A
IdLayer

S A
e B W
HtmlLayer
S A
e A
TCPLayer

—

v

Lorenzo Bettini (DSI@FI A DI@TO)

Building Applications with IMC

Miniscuola WOA, Sept. 2007

19 /55

State A State B

I A
IdLayer

S A
e B W
HtmlLayer
S A
e A
TCPLayer

—

Communication Protocols: an example

I A
IdLayer

S A
e B W
HtmlLayer
S A
e A
TCPLayer

—

v

Lorenzo Bettini (DSI@FI A DI@TO)

Building Applications with IMC

Miniscuola WOA, Sept. 2007

19 /55

State A State B

I A
IdLayer

S A
e B W
HtmlLayer
S A
e A
TCPLayer

—

Communication Protocols: an example

I A
IdLayer

S A
e B W
HtmlLayer
S A
e A
TCPLayer

—

v

Lorenzo Bettini (DSI@FI A DI@TO)

Building Applications with IMC

Miniscuola WOA, Sept. 2007

19 /55

State A State B

I A
IdLayer

S A
e B W
HtmlLayer
S A
e A
TCPLayer

—

Communication Protocols: an example

I A
IdLayer

S A
e B W
HtmlLayer
S A
e A
TCPLayer

—

v

Lorenzo Bettini (DSI@FI A DI@TO)

Building Applications with IMC

Miniscuola WOA, Sept. 2007

19 /55

State A

I A
IdLayer

S A
e B W
HtmlLayer
S A
e A
TCPLayer

State B

—

Il

Communication Protocols: an example

I A
IdLayer

S A
e B W
HtmlLayer
S A
e A
TCPLayer

—

v

Lorenzo Bettini (DSI@FI A DI@TO)

Building Applications with IMC

Miniscuola WOA, Sept. 2007

19 /55

State A State B

I A
IdLayer

S A
e B W
HtmlLayer
S A
e A
TCPLayer

—

Communication Protocols: an example

I A
IdLayer

S A
e B W
HtmlLayer
S A
e A
TCPLayer

—

v

Lorenzo Bettini (DSI@FI A DI@TO)

Building Applications with IMC

Miniscuola WOA, Sept. 2007

19 /55

State A State B

I A
IdLayer

S A
e B W
HtmlLayer
S A
e A
TCPLayer

—

Communication Protocols: an example

I A
IdLayer

S A
e B W
HtmlLayer
S A
e A
TCPLayer

—

v

Lorenzo Bettini (DSI@FI A DI@TO)

Building Applications with IMC

Miniscuola WOA, Sept. 2007

19 /55

State A State B

I A
IdLayer

S A
e B W
HtmlLayer
S A
e A
TCPLayer

—

Communication Protocols: an example

I A
IdLayer

S A
e B W
HtmlLayer
S A
e A
TCPLayer

—

v

Lorenzo Bettini (DSI@FI A DI@TO)

Building Applications with IMC

Miniscuola WOA, Sept. 2007

19 /55

State A State B

I A
IdLayer

S A
e B W
HtmlLayer
S A
e A
TCPLayer

—

Communication Protocols: an example

I A
IdLayer

S A
e B W
HtmlLayer
S A
e A
TCPLayer

—

v

Lorenzo Bettini (DSI@FI A DI@TO)

Building Applications with IMC

Miniscuola WOA, Sept. 2007

19 /55

State A State B

I A
IdLayer

S A
e B W
HtmlLayer
S A
e A
TCPLayer

—

Communication Protocols: an example

I A
IdLayer

S A
e B W
HtmlLayer
S A
e A
TCPLayer

—

v

Lorenzo Bettini (DSI@FI A DI@TO)

Building Applications with IMC

Miniscuola WOA, Sept. 2007

19 /55

State A State B

I A
IdLayer

S A
e B W
HtmlLayer
S A
e A
TCPLayer

—

Communication Protocols: an example

I A
IdLayer

S A
e B W
HtmlLayer
S A
e A
TCPLayer

—

v

Lorenzo Bettini (DSI@FI A DI@TO)

Building Applications with IMC

Miniscuola WOA, Sept. 2007

19 /55

State A State B

I A
IdLayer

S A
e B W
HtmlLayer
S A
e A
TCPLayer

—

Communication Protocols: an example

I A
IdLayer

S A
e B W
HtmlLayer
S A
e A
TCPLayer

—

v

Lorenzo Bettini (DSI@FI A DI@TO)

Building Applications with IMC

Miniscuola WOA, Sept. 2007

19 /55

IdLayer
—
e B W
HtmlLayer
N
=
TCPLayer

—

Communication Protocols: an example

=] sta
I A

>

I A
IdLayer

S A
e B W
HtmlLayer
S A
e A
TCPLayer

—

v

Lorenzo Bettini (DSI@FI A DI@TO)

Building Applications with IMC

Miniscuola WOA, Sept. 2007

19 /55

State B

I A
IdLayer

S A
e B W
HtmlLayer
S A
e A
TCPLayer
s

Communication Protocols: an example

I A
IdLayer

S A
e B W
HtmlLayer
S A
e A
TCPLayer

—

v

Lorenzo Bettini (DSI@FI A DI@TO)

Building Applications with IMC

Miniscuola WOA, Sept. 2007

19 /55

The class ProtocolState

Derive from the class ProtocolState; implement enter ()

public class EchoProtocolState extends ProtocolStateSimple {
public void enter(Object param, TransmissionChannel transmissionChannel)

throws ProtocolException {

UnMarshaler unMarshaler = createUnMarshaler();

String line = unMarshaler.readStringLine();

releaseUnMarshaler(unMarshaler);

Marshaler marshaler = createMarshaler();

marshaler.writeStringLine(line);

releaseMarshaler(marshaler);

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007

20 / 55

The class ProtocolState

Derive from the class ProtocolState; implement enter ()

public class EchoProtocolState extends ProtocolStateSimple {
public void enter(Object param, TransmissionChannel transmissionChannel)

throws ProtocolException {

UnMarshaler unMarshaler = createUnMarshaler();

String line = unMarshaler.readStringLine();

releaseUnMarshaler(unMarshaler);

Marshaler marshaler = createMarshaler();

marshaler.writeStringLine(line);

releaseMarshaler(marshaler);

getUnMarshaler

if (transmissionChannel == null || transmissionChannel.unMarshaler == null) {
return createUnMarshaler();

else

return transmissionChannel.unMarshaler;

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 20 / 55

Switch state

Avoid writing long switch statements

ProtocolSwitchState

protocolSwitchState.addRequestState("WRITE", new WriteState(Protocol. START));
protocolSwitchState.addRequestState("READ", new ReadState(Protocol. START));
protocolSwitchState.addRequestState("REMOVE", new ReadState(Protocol.START));
protocolSwitchState.addRequestState("QUIT", Protocol.END);

Protocol protocol = new Protocol();

protocol.setState(Protocol. START, protocolSwitchState);

@ Each protocol state is parameterized with the next state in the
automaton

@ START and END are the identifiers of the special start and end states

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 21 /55

Connectivity features

Provide basic connectivity classes:

@ Node:

> container of executing processes (NodeProcess)
» provides features to receive and establish a session, e.g.: accept,
connect

o SessionManager: keeps trace of all the established sessions

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 22 /55

Connectivity features

Provide basic connectivity classes:

@ Node:

> container of executing processes (NodeProcess)
» provides features to receive and establish a session, e.g.: accept,
connect

o SessionManager: keeps trace of all the established sessions

Session identifiers
Sessions are logical connections and independent from the low level

communication layer. Automatically chosen according to SessionId
@ Stream connections for TCP sockets (tcp-mysite.com:9999)

o Logical connections if UDP packets are used
(udp-mysite.com:9999)

@ Local pipes (pipe-foobar)

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 22 /55

Session Starter

SessionStarter is an abstract class for establishing a session (both client
and server side):

public abstract class SessionStarter {
/** Accepts an incoming session. */
public abstract Session accept() throws ProtocolException;

/** Establishes a session. */
public abstract Session connect() throws ProtocolException;

/** Closes this starter, but not sessions created through this starter. */
protected abstract void doClose() throws ProtocolException;

Specific session starters should be provided for specific low-level
communication protocols; the framework provides TcpSessionStarter,
UdpSessionStarter and LocalSessionStarter (that uses local pipes,
useful for testing).

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 23 /55

Example: creating a TCP session, server-side

int port = 9999;
ProtocolStack protocolStack = new ProtocolStack();
// possibly customize stack with additional layers
System.out.printIn("accepting connections on port " 4+ port);
SessionStarter sessionStarter = new TcpSessionStarter(new IpSessionld(port));
Session session = protocolStack.accept(sessionStarter);
System.out.printIn("established session " + session);
sessionStarter.close();
// no more accepting sessions, but the established session is still up.
UnMarshaler unMarshaler = protocolStack.createUnMarshaler();
while (true) {

System.out.printIn("read line: " + unMarshaler.readStringLine());

}

The client side will be similar (but it will use connect instead of accept).

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 24 / 55

Abstracting from session starters

@ IMCSessionStarterTable: associates a SessionStarter class to a
specific SessionId identifier

> e.g., "tcp" — TcpSessionStarter

@ We can then abstract from a specific session type

@ method createSessionStarter(Sessionld) returns the SessionStarter
associated to a specific session type.

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 25 / 55

Abstracting from session starters

o IMCSessionStarterTable: associates a SessionStarter class to a
specific SessionId identifier
> e.g., "tcp" — TcpSessionStarter
@ We can then abstract from a specific session type
@ method createSessionStarter(Sessionld) returns the SessionStarter
associated to a specific session type.

Abstraction

Switching from a session type to another is just a matter of changing the
session identifier.

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 25 / 55

Binding protocols and sessions

public class GenericServer {
public GenericServer(String host, Protocol protocol)

throws ProtocolException, IOException {
SessionStarterTable sessionStarterTable = new IMCSessionStarterTable();
Sessionld sessionld = Sessionld.parseSessionld(host);
System.out.printIn("accepting session " + sessionld + " ...");
ProtocolStack protocolStack = new ProtocolStack();
Session session =

protocolStack.accept(sessionStarter Table.createSessionStarter(sessionld));
System.out.printIn("established session " + session);
System.out.printIn("starting protocol... ");
protocol.setProtocolStack(protocolStack);
protocol.start();
protocol.close();
System.out.printIn("protocol terminated");

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 26 / 55

Nodes & Processes

@ A participant to a network is an instance of class Node.
@ A node is a container of running processes (class NodeProcess).

» The programmer must inherit from NodeProcess
» and provide the implementation for method execute

@ A process can access the resources contained in a node and migrate
to other nodes.

@ A node keeps track of all the processes currently in execution.

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 27 / 55

Processes & proxies

@ Processes delegate most of their methods to the node they are

running in.

@ However, they do not have access to the node itself (to avoid security

problems).

@ This is achieved by using a proxy: the processes delegate to the proxy
and not directly to the node.

delegates to proxyBI

Lorenzo Bettini (DSI@FI A DI@TO)

NodeProcess NodeProcessProxy Node
proxy N node N

-NodeProcessProxy ~ | -Node ~ [+getNodeStack()

+execute() +getNodeStack() +addNodeProcess ()

+getNodeStack() +addNodeProcess()

+addNodeProcess ()

delegates to node

Building Applications with IMC Miniscuola WOA, Sept. 2007 28 / 55

A process example

A process running a protocol

public class Protocol Thread extends NodeProcess {
/** The protocol this thread will execute. */
protected Protocol protocol;

public void execute() throws IMCException {

try {
protocol.start();

} finally {
close();
}

}

public void close() throws IMCException {
super.close();
protocol.close();

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007

29 / 55

Node coordinators

Node coordinators are super user processes:

@ Privileged processes

@ can execute connection and disconnection actions

@ cannot migrate

Standard processes cannot execute privileged actions.

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007

. . Node
NodeCoordinator NodeCoordinatorProxy
proxy node
-NodeCoordinatorProxy -Node accept()
+execute() +accept() +connect ()
+accept() +connect()
+connect()
A
N delegates to node
delegates to proxy

30 / 55

A node coordinator example

Accepting connections

public class MyCoordinator extends NodeCoordinator {
Sessionld sessionld;

public void execute() throws IMCException {
Protocol protocol = new MyProtocol();
accept(sessionld, protocol);
protocol.start();

public static void main(String args|[]) {
Node node = new Node();
node.addNodeCoordinator(new MyCoordinator());

}

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007

31/ 55

Another node coordinator example

Accepting connections (multi-threaded)

public class AcceptNodeCoordinator extends NodeCoordinator {
private ProtocolFactory protocolFactory;
private Sessionld sessionld;
private SessionStarter sessionStarter;

public void execute() throws IMCException {
if (sessionStarter == null)
sessionStarter = createSessionStarter(sessionld, null);

while (true) {
Protocol protocol = protocolFactory.createProtocol();
addNodeProcess(
new ProtocolThread(accept(sessionStarter, protocol)));

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007

32/ 55

Goals of the package mobility

Package org.mikado.imc.mobility

Make code mobility transparent to the programmer
All issues are dealt with by the package:

» code collecting, marshalling
» code dispatch
» dynamic loading of code received from a remote site

@ Provide abstract interfaces and implementations for Java byte-code
mobility

@ Used internally by the IMC protocols package to exchange
migrating objects, but can also be used as a stand-alone package

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 33 /55

Moving code

Two possible approaches:

@ Automatic: the classes needed by the migrating code are collected
and delivered together with that code;

@ On demand: when some classes are required by code migrated to a
remote site, it is requested to the server that sent the code.

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 34 /55

We choose automatic approach

Advantage
Comply with mobile agent paradigm:
@ the agent is autonomous when migrating

@ disconnected operations

@ the originating computer does not need be connected after migration

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 35 /55

We choose automatic approach

Advantage

Comply with mobile agent paradigm:
@ the agent is autonomous when migrating
@ disconnected operations

@ the originating computer does not need be connected after migration

Drawback
Code that may be never used is dispatched

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 35 /55

Kinds of mobility

Three kinds of mobility have been identified in the literature:

@ weak mobility: the dynamic linking of code arriving from a different
site;

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 36 / 55

Kinds of mobility
Three kinds of mobility have been identified in the literature:
@ weak mobility: the dynamic linking of code arriving from a different
site;
@ strong mobility: the movement of the code and of the execution state
of a thread to a different site and the resumption of its execution on

arrival;

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 36 / 55

Kinds of mobility

Three kinds of mobility have been identified in the literature:
@ weak mobility: the dynamic linking of code arriving from a different
site;
@ strong mobility: the movement of the code and of the execution state

of a thread to a different site and the resumption of its execution on
arrival;

o full mobility: the movement of the whole state of the running
program including all threads’ stacks, namespaces and other
resources. This is a generalization of strong mobility that makes the
migration completely transparent.

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 36 / 55

Code mobility in Java (and in IMC)

Unfortunately Java only provides weak mobility, since threads’ execution
state (stack and program counter) cannot be saved and restored

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 37 /55

Code mobility in Java (and in IMC)

Unfortunately Java only provides weak mobility, since threads’ execution
state (stack and program counter) cannot be saved and restored

@ On arrival the process is simply executed from the start

@ It is up to the programmer to keep track of the execution state of the
process

@ However, all the process fields' values are restored on arrivale

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 37 /55

Java byte-code mobility

Starting from these interfaces, the package mobility provides concrete
classes that automatically deal with

@ migration of Java objects together and their byte-code;

@ deserializing transparently such objects by dynamically loading their
transmitted byte-code.

abstract part

E MigratingCode MigratingPacket MigratingCodeMarshaller E
E +obj bytes: byte[] tmarshall() A ;
! 1
1
JavaMigratingCode JavaMigratingPacket JavaByeCodeMarshaller
+run()
+make_packet () +class bytes: byvtel[] ‘marshatl()

Figure: Main classes of the package

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 38 /55

Migrating Java code

public class JavaMigratingCode extends Thread implements MigratingCode {

public void run() { /* empty */ }
public JavaMigratingPacket make_packet() throws |OException {...}

}

@ the serialized object

o the byte code of all the classes used by the migrating object (these
classes are collected by make packet using Java Reflection API)

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 39 /55

Migrating Java code

public class JavaMigratingCode extends Thread implements MigratingCode {
public void run() { /* empty */ }
public JavaMigratingPacket make_packet() throws |OException {...}

}

@ the serialized object

o the byte code of all the classes used by the migrating object (these
classes are collected by make packet using Java Reflection API)

Scalable to inheritance

make_packet needs not be redefined in derived classes: it handles
subclasses transparently and automatically.

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 39 /55

Collecting classes

getUsedClasses

protected void getUsedClasses(Class c) {
if (c == null || ! addUsedClass(c)) return ;

Field[] fields = c.getDeclaredFields() ;

Constructor[] constructors = c.getDeclaredConstructors() ;
Method[] methods = c.getDeclaredMethods() ;

inti;

for (i =0;i < fields.length ; i++)
getUsedClasses(fields|[i].getType()) ;

for (i =0 ;i < constructors.length ; i++) {
getUsedClasses(constructors[i].getParameterTypes()) ;
getUsedClasses(constructors|i].getExceptionTypes()) ;

}

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007

40 / 55

Collecting classes

Some classes are excluded by the collection:

@ Classes belonging to standard libraries
> these classes are given additional privileges, thus they must be loaded
from the local file system
o classes of specific packages (e.g., the IMC package) that must be
present in the remote sites

@ classes explicitly excluded by the programmer

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 41 / 55

Code Mobility: example

o:A

B

Lorenzo Bettini (DSIOFI A DIQTO)

o F
Building Applications with IMC

it
S

Code Mobility: example

o:A

B

Lorenzo Bettini (DSIOFI A DIQTO)

o F
Building Applications with IMC

it
S

Code Mobility: example

o:A

Lorenzo Bettini (DSIOFI A DIQTO)

o F
Building Applications with IMC

it
S

Code Mobility: example

o:A

Lorenzo Bettini (DSI@FI A DIGTO) Building Applications with IMC

Code Mobility: example

o:A

B

Lorenzo Bettini (DSI@FI A DIGTO) Building Applications with IMC

Code Mobility: example

o:A

B =

Lorenzo Bettini (DSI@FI A DIGTO) Building Applications with IMC

Code Mobility: example

o:A o:A

v

B =

Lorenzo Bettini (DSI@FI A DIGTO) Building Applications with IMC

Code Mobility: example

o:A o:A

Bl - - N

Lorenzo Bettini (DSI@FI A DIGTO) Building Applications with IMC

Code Mobility: example

o:A

o:A

- imc.C c
+ Integer i

B

Lorenzo Bettini (DSIOFI A DIQTO)

o F
Building Applications with IMC

it
)]

Code Mobility: example

o:A o:A

-imc.Cc
+ Integer i

B ~ I

Lorenzo Bettini (DSI@FI A DIGTO) Building Applications with IMC Miniscuola WOA, Sept. 2007 42 / 55

Code Mobility: example

o:A

B

Lorenzo Bettini (DSI@FI A DIGTO) Building Applications with IMC

NodeClassLoader

Each site willing to accept migrating code will internally use a
NodeClassLoader provided by the package

@ When a migrating code is received from the network in a
JavaMigratingPacket

@ its classes are stored in the NodeClassLoader internal table

@ the object is deserialized

@ during deserialization, needed classes are loaded by
NodeClassLoader from the internal class table

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007

43 / 55

Retrieving class byte code

When a MigratingPacket is created the byte code of the collected
classes is retrieved:

@ by the local file system, in the originating site

@ by the NodeClassLoader table in the other sites

This enables a migrating code to visit many sites in sequence.

Lorenzo Bettini (DSI@FI A DI@TO)

Building Applications with IMC

Miniscuola WOA, Sept. 2007 44 / 55

DP1 programming model

@ Dvpi1 is a locality-based extension of 7:
> Processes are distributed over a set of nodes (or locations) each of
which is identified by a name or locality.
Like in 7 calculus, processes interact each other via message passing
over channels.

@ Only local communication is permitted
» Two processes can interact only if they are located on the same node.

@ Processes can change their execution environment performing action

go.
@ DPI does not assume a specific network topology
» a variant of Dp1, DPIF, considers explicit link

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 45 / 55

DP1 programming model

@ DrpI is a locality-based extension of 7:
> Processes are distributed over a set of nodes (or locations) each of
which is identified by a name or locality.
Like in 7 calculus, processes interact each other via message passing
over channels.

Only local communication is permitted
» Two processes can interact only if they are located on the same node.

@ Processes can change their execution environment performing action

go.
@ DPI does not assume a specific network topology
» a variant of Dp1, DPIF, considers explicit link

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 45 / 55

DPI syntax

Systems
M,N == 0 Empty
| M|N Composition
| (ve).N Restriction
| 1]P] Agent
Threads
P,Q,R = stop Termination
| P|@Q Composition
| (ve)P Restriction
| go u.P Movement
| ul{v).P Output
| u?(X).P Input
| rec AP Recursion
| A Process Identifier
|

if u=v then P else Q Matching

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 46 / 55

JDPI implementation...

@ JDpiProtocol:
» implements the communication protocol between DPI nodes;

JDpiProcess:
» implements a generic DPI process;
> is a JavaMigratingCode.
JDpiNode:
> implements a DPI node;

» provides a computational environment for JDpiProcesses;
» manages local channel interactions;

@ JDpiLocality:
» is an abstraction for node names

@ Two kinds of topology have been implemented:

> flat;
» ala DpiF.

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007

47 / 55

Implementing DPI
Node

DPI nodes provide:

@ a computational environment for processes;

@ functionalities for processes interactions

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 48 / 55

Implementing DPI
Node
DPI nodes provide:
@ a computational environment for processes;

@ functionalities for processes interactions

Implemented as...
@ an extension of org.mikado.topology.Node;
@ new methods for managing channels:

creation;
input;
output.

v

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 48 / 55

Implementing DPI
Processes
@ a Dp1 process (JDpiProcess) is implemented as a subclass of the
class NodeProcess
» each process has to provide method body();
> implements the JavaMigratingCode;
> allows to easily migrate a process to a remote site.
@ Processes can be added to a node for execution with the method
addProcess

@ Each process interacts with the hosting node using a JDpiNodeProxy

» provides an access to node methods;

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 49 / 55

Implementing DP1: Example 1

Processes

rec X.ex?(u).go@u.X

Implemented in Java

class MyProc extends JDpiProcess {
public void body() {
JDpiChannelName<JDpilLocality> inC =
new JDpiChannelName<JDpilLocality>("ex");
JDpilLocality u = in(inC);
go(u);

}
}

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007

50 / 55

Implementing DP1: Example 2

Processes

va.exla

Implemented in Java

public void body(){
JDpiChannelName<String> a = new JDpiChannelName<String>();
JDpiChannelName<JDpiChannelName<String>> outChannel =

new JDpiChannelName<JDpiChannelName<String>>("ex");
out(outChannel, a);

}

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 51 /55

Implementing DP1: Example 3

An agent that migrates over a set of electronic markets, in search of a best

price. At the end of the search, the agent migrates to locality home and
provides its result on channel result.

Implemented in Java

public void body() {
while (count < localities.size()) {

JDpiChannelName<Article> ¢ = new JDpiChannelName<Article>(art);

Article a = in(¢);

if ((lowestPrice == 0)||(a.getPrice()<lowestPrice)) {
locality = localities.get(count);
lowestPrice = a.getPrice();

}

if (++count < localities.size())
go(localities.get(count));

else
go(home);

}
}
}

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007

&
52 / 55

Metrics

The Java implementation JDPI is composed of

@ about 1000 lines of code
@ only 28 classes:

» provide 152 methods,
> the average number of lines per method is 3.5

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 53 / 55

Ongoing works

@ Implementing security policies

» Calculus of Membranes;

» Types for access control,

» Logical specification of security policies;
>

o Consider process interaction based on XML
» query and pattern matching

@ Reimplement KLAVA (the run-time system for KLAIM) using IMC

@ Integration in Eclipse

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 54 / 55

Ongoing works

@ Implementing security policies

» Calculus of Membranes;

» Types for access control,

» Logical specification of security policies;
> .

o Consider process interaction based on XML
» query and pattern matching

@ Reimplement KLAVA (the run-time system for KLAIM) using IMC

@ Integration in Eclipse

Services (project SENSORIA)
@ Add features to deal with services

@ Single out recurrent mechanisms of calculi for SOC (e.g., SCC,
Cows, ...)

54 / 55

Lorenzo Bettini (DSI@FI A DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007

References

http://imc-fi.sourceforge.net

@ papers

@ documentation
o GPL software

Lorenzo Bettini (DSI@FI A DIGTO) Building Applications with IMC Miniscuola WOA, Sept. 2007 55 / 55

References

http://imc-fi.sourceforge.net

@ papers
@ documentation
o GPL software

Thanks!

Lorenzo Bettini (DSI@FI A DIGTO) Building Applications with IMC Miniscuola WOA, Sept. 2007 55 / 55

	Outline
	Motivations
	The IMC Framework
	Protocols
	Topology
	Mobility

	Implementing Dpi in IMC
	Conclusions

