
Building Distributed and Mobile Applications with IMC

Lorenzo Bettini

Dipartimento di Sistemi e Informatica Dipartimento di Informatica
Università di Firenze Università di Torino

http://www.lorenzobettini.it

Miniscuola WOA, Sept. 2007

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 1 / 55

1 Motivations

2 The IMC Framework
Protocols
Topology
Mobility

3 Implementing Dpi in IMC

4 Conclusions

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 2 / 55

Implementing Distributed Applications & Code Mobility

Java provides useful means for implementing distributed applications:

I Java network library
I language synchronization features

and code mobility:

I object serialization
I dynamic class loading

These mechanisms are low-level
I Most Java-based distributed and mobile systems re-implement from

scratch components for distribution and mobility

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 3 / 55

Implementing Distributed Applications & Code Mobility

Java provides useful means for implementing distributed applications:
I Java network library
I language synchronization features

and code mobility:
I object serialization
I dynamic class loading

These mechanisms are low-level
I Most Java-based distributed and mobile systems re-implement from

scratch components for distribution and mobility

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 3 / 55

Implementing Distributed Applications & Code Mobility

Java provides useful means for implementing distributed applications:
I Java network library
I language synchronization features

and code mobility:
I object serialization
I dynamic class loading

These mechanisms are low-level
I Most Java-based distributed and mobile systems re-implement from

scratch components for distribution and mobility

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 3 / 55

IMC - Implementing Mobile Calculi

Is a middleware/framework for implementing distributed and mobile
code run-time systems

Aims at simplifying the implementation of distributed mobile code
applications:

I is based on recurrent standard mechanisms and patterns
I permits concentrating on the features that are specific of a particular

language
I can be easily extended/customized to fit language-specific requirements

Provides components for
I Network topology
I Communication protocols
I Code mobility

We have used IMC to implement run-time systems for some mobile
and distributed calculi (e.g., JDpi, Klava, etc.).

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 4 / 55

The MIKADO project

The IMC framework is being built within an European project (EU-FET)
on Global Computing

Calculi for Mobility

The main intent is to investigate new mobile code calculi linguistic
features:

I The meta theory
I Provide prototype implementations

One of the tasks of the project was to build a framework for developing
the run-time systems for mobile code languages.

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 5 / 55

Protocols

Primitives for implementing specific protocols
I low level protocols (protocol layers)
I high level protocols (protocol states)

Build a protocol starting from small components

Make the components re-usable:
I the components are abstract and independent from specific

communication layers.

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 6 / 55

Network Topology

Primitives for connection and disconnection (both physical and
logical)

Node creation and deletion

Keeps track of the topology of the network
I flat
I hierarchical

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 7 / 55

Mobility

Make code mobility transparent to the programmer

All issues are dealt with by the package:
I code collecting, marshalling
I code dispatch
I dynamic loading of code received from a remote site

Provide abstract interfaces and implementations for Java byte-code
mobility

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 8 / 55

Network protocols...

Each network protocol is viewed as an aggregation of protocol states:
I a high-level communication protocol is described as a state automaton

Each protocol state is implemented:
I by extending the ProtocolState abstract class
I by providing the implementation for the method enter, which returns

the next state to execute.

The Protocol class:
I aggregates the protocol states
I provides a template method (start) that will execute each state at a

time

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 9 / 55

Marshalers and UnMarshalers

Specialized streams: Marshaler and an UnMarshaler to write/read
from the actual communication layer.

They provide means to write/read any primitive data type (inherited
from DataOutput and DataInput).

They deal with code mobility (relying on the mobility sub-package).

public interface Marshaler extends
DataOutput, Closeable, Flushable, MigratingCodeHandler {

void writeStringLine(String s) throws IOException;
void writeReference(Serializable o) throws IOException;
void writeMigratingCode(MigratingCode code) throws IOException,

MigrationUnsupported;
void writeMigratingPacket(MigratingPacket packet) throws IOException;
...

}

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 10 / 55

Protocol layers

The data in the streams can be “pre-processed” by some customized
protocol layers

Each protocol layer takes care of the shape of messages (low-level
protocol)

These layers are then composed into a ProtocolStack that ensures
the order of preprocessing passing through all the layers in the stack.

remove
seqnum

add
seqnum+1

Layer y

remove
"PUT:"

add
"GET:"

Layer x

TCP UDP

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 11 / 55

Using a ProtocolStack

Writing

Marshaler m = protocolStack.createMarshaler();
m.setMigratingCodeFactory(new JavaByteCodeMigratingCodeFactory());
m.writeStringLine("obj");
m.writeInt(obj.size());
m.writeMigratingCode(obj);

protocolStack.releaseMarshaler(m);

Reading

UnMarshaler u = protocolStack.createUnMarshaler();
u.setMigratingCodeFactory(new JavaByteCodeMigratingCodeFactory());
s = u.readStringLine();
i = u.readInt();
obj = u.readMigratingCode();

protocolStack.releaseUnMarshaler(u);

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 12 / 55

Using a ProtocolStack

Writing

Marshaler m = protocolStack.createMarshaler();
m.setMigratingCodeFactory(new JavaByteCodeMigratingCodeFactory());
m.writeStringLine("obj");
m.writeInt(obj.size());
m.writeMigratingCode(obj);

protocolStack.releaseMarshaler(m);

Reading

UnMarshaler u = protocolStack.createUnMarshaler();
u.setMigratingCodeFactory(new JavaByteCodeMigratingCodeFactory());
s = u.readStringLine();
i = u.readInt();
obj = u.readMigratingCode();

protocolStack.releaseUnMarshaler(u);

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 12 / 55

How layers work

When a marshaler is created, a new “communication” is started
(using the underlying session);

The headers (of the low-level protocol layers) are created;

The contents written using the marshaler can be buffered (e.g., for
UDP, into an UDP packet);

When the marshaler is released the buffer is actually flushed (e.g., for
UDP, the packet is actually sent).

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 13 / 55

A customized layer

The following specialized protocol layer removes a header from the input
that consists of the line "IN"; it also adds a header to the output that
consists of the line "OUT":

public class OutInLayer extends ProtocolLayer {
protected Marshaler doCreateMarshaler(Marshaler marshaler)

throws ProtocolException {
marshaler.writeStringLine("OUT");
return marshaler;

}

protected UnMarshaler doCreateUnMarshaler(UnMarshaler unMarshaler)
throws ProtocolException {
String header = unMarshaler.readStringLine();
if (!header.equals("IN"))

throw new ProtocolException("wrong header: " + header);
return unMarshaler;

}
}

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 14 / 55

Tunneling

A specialized subclass, TunnelProtocolLayer is provided that permits to
“tunnel” a protocol layer into another (high level) protocol: e.g.,
encapsulate a message into HTTP requests and responses.

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 15 / 55

Tunneling

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 16 / 55

Protocol States

A high level protocol can be described as a state automaton.
The protocols package provides features to implement protocol states
and compose them in an automaton.

State a

State dState c

State b

State e

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 17 / 55

The class Protocol

A collection of protocol states and a reference to a protocol stack:

State a

State dState c

State b

State e

remove
header

add
header

Layer z

remove
header

add
header

Layer y

remove
header

add
header

Layer x

P
r
o
t
o
c
o
l

S
t
a
c
k

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 18 / 55

Communication Protocols: an example

State A State B

State A State BState A State B

IdLayer

TCPLayer

State C

IdLayer

TCPLayer

State A State BState A State BState A State B

IdLayer

HtmlLayer

TCPLayer

State C

IdLayer

HtmlLayer

TCPLayer

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 19 / 55

Communication Protocols: an example

State A State B

State A State BState A State B

IdLayer

TCPLayer

State C

IdLayer

TCPLayer

State A State BState A State BState A State B

IdLayer

HtmlLayer

TCPLayer

State C

IdLayer

HtmlLayer

TCPLayer

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 19 / 55

Communication Protocols: an example

State A State B

State A State BState A State B

IdLayer

TCPLayer

State C

IdLayer

TCPLayer

State A State BState A State BState A State B

IdLayer

HtmlLayer

TCPLayer

State C

IdLayer

HtmlLayer

TCPLayer

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 19 / 55

Communication Protocols: an example

State A State B

State A State BState A State B

IdLayer

TCPLayer

State C

IdLayer

TCPLayer

State A State BState A State BState A State B

IdLayer

HtmlLayer

TCPLayer

State C

IdLayer

HtmlLayer

TCPLayer

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 19 / 55

Communication Protocols: an example

State A State B

State A State B

State A State B

IdLayer

TCPLayer

State C

IdLayer

TCPLayer

State A State BState A State BState A State B

IdLayer

HtmlLayer

TCPLayer

State C

IdLayer

HtmlLayer

TCPLayer

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 19 / 55

Communication Protocols: an example

State A State B

State A State B

State A State B

IdLayer

TCPLayer

State C

IdLayer

TCPLayer

State A State BState A State BState A State B

IdLayer

HtmlLayer

TCPLayer

State C

IdLayer

HtmlLayer

TCPLayer

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 19 / 55

Communication Protocols: an example

State A State B

State A State B

State A State B

IdLayer

TCPLayer

State C

IdLayer

TCPLayer

State A State BState A State BState A State B

IdLayer

HtmlLayer

TCPLayer

State C

IdLayer

HtmlLayer

TCPLayer

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 19 / 55

Communication Protocols: an example

State A State B

State A State B

State A State B

IdLayer

TCPLayer

State C

IdLayer

TCPLayer

State A State BState A State BState A State B

IdLayer

HtmlLayer

TCPLayer

State C

IdLayer

HtmlLayer

TCPLayer

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 19 / 55

Communication Protocols: an example

State A State B

State A State B

State A State B

IdLayer

TCPLayer

State C

IdLayer

TCPLayer

State A State BState A State BState A State B

IdLayer

HtmlLayer

TCPLayer

State C

IdLayer

HtmlLayer

TCPLayer

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 19 / 55

Communication Protocols: an example

State A State B

State A State B

State A State B

IdLayer

TCPLayer

State C

IdLayer

TCPLayer

State A State BState A State BState A State B

IdLayer

HtmlLayer

TCPLayer

State C

IdLayer

HtmlLayer

TCPLayer

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 19 / 55

Communication Protocols: an example

State A State B

State A State B

State A State B

IdLayer

TCPLayer

State C

IdLayer

TCPLayer

State A State BState A State BState A State B

IdLayer

HtmlLayer

TCPLayer

State C

IdLayer

HtmlLayer

TCPLayer

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 19 / 55

Communication Protocols: an example

State A State B

State A State B

State A State B

IdLayer

TCPLayer

State C

IdLayer

TCPLayer

State A State BState A State BState A State B

IdLayer

HtmlLayer

TCPLayer

State C

IdLayer

HtmlLayer

TCPLayer

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 19 / 55

Communication Protocols: an example

State A State B

State A State B

State A State B

IdLayer

TCPLayer

State C

IdLayer

TCPLayer

State A State BState A State BState A State B

IdLayer

HtmlLayer

TCPLayer

State C

IdLayer

HtmlLayer

TCPLayer

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 19 / 55

Communication Protocols: an example

State A State B

State A State B

State A State B

IdLayer

TCPLayer

State C

IdLayer

TCPLayer

State A State BState A State BState A State B

IdLayer

HtmlLayer

TCPLayer

State C

IdLayer

HtmlLayer

TCPLayer

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 19 / 55

Communication Protocols: an example

State A State BState A State B

State A State B

IdLayer

TCPLayer

State C

IdLayer

TCPLayer

State A State BState A State BState A State B

IdLayer

HtmlLayer

TCPLayer

State C

IdLayer

HtmlLayer

TCPLayer

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 19 / 55

Communication Protocols: an example

State A State BState A State BState A State B

IdLayer

TCPLayer

State C

IdLayer

TCPLayer

State A State B

State A State BState A State B

IdLayer

HtmlLayer

TCPLayer

State C

IdLayer

HtmlLayer

TCPLayer

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 19 / 55

Communication Protocols: an example

State A State BState A State BState A State B

IdLayer

TCPLayer

State C

IdLayer

TCPLayer

State A State B

State A State BState A State B

IdLayer

HtmlLayer

TCPLayer

State C

IdLayer

HtmlLayer

TCPLayer

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 19 / 55

Communication Protocols: an example

State A State BState A State BState A State B

IdLayer

TCPLayer

State C

IdLayer

TCPLayer

State A State B

State A State BState A State B

IdLayer

HtmlLayer

TCPLayer

State C

IdLayer

HtmlLayer

TCPLayer

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 19 / 55

Communication Protocols: an example

State A State BState A State BState A State B

IdLayer

TCPLayer

State C

IdLayer

TCPLayer

State A State B

State A State BState A State B

IdLayer

HtmlLayer

TCPLayer

State C

IdLayer

HtmlLayer

TCPLayer

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 19 / 55

Communication Protocols: an example

State A State BState A State BState A State B

IdLayer

TCPLayer

State C

IdLayer

TCPLayer

State A State B

State A State BState A State B

IdLayer

HtmlLayer

TCPLayer

State C

IdLayer

HtmlLayer

TCPLayer

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 19 / 55

Communication Protocols: an example

State A State BState A State BState A State B

IdLayer

TCPLayer

State C

IdLayer

TCPLayer

State A State B

State A State B

State A State B

IdLayer

HtmlLayer

TCPLayer

State C

IdLayer

HtmlLayer

TCPLayer

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 19 / 55

Communication Protocols: an example

State A State BState A State BState A State B

IdLayer

TCPLayer

State C

IdLayer

TCPLayer

State A State B

State A State B

State A State B

IdLayer

HtmlLayer

TCPLayer

State C

IdLayer

HtmlLayer

TCPLayer

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 19 / 55

Communication Protocols: an example

State A State BState A State BState A State B

IdLayer

TCPLayer

State C

IdLayer

TCPLayer

State A State B

State A State B

State A State B

IdLayer

HtmlLayer

TCPLayer

State C

IdLayer

HtmlLayer

TCPLayer

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 19 / 55

Communication Protocols: an example

State A State BState A State BState A State B

IdLayer

TCPLayer

State C

IdLayer

TCPLayer

State A State B

State A State B

State A State B

IdLayer

HtmlLayer

TCPLayer

State C

IdLayer

HtmlLayer

TCPLayer

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 19 / 55

Communication Protocols: an example

State A State BState A State BState A State B

IdLayer

TCPLayer

State C

IdLayer

TCPLayer

State A State B

State A State B

State A State B

IdLayer

HtmlLayer

TCPLayer

State C

IdLayer

HtmlLayer

TCPLayer

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 19 / 55

Communication Protocols: an example

State A State BState A State BState A State B

IdLayer

TCPLayer

State C

IdLayer

TCPLayer

State A State B

State A State B

State A State B

IdLayer

HtmlLayer

TCPLayer

State C

IdLayer

HtmlLayer

TCPLayer

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 19 / 55

Communication Protocols: an example

State A State BState A State BState A State B

IdLayer

TCPLayer

State C

IdLayer

TCPLayer

State A State B

State A State B

State A State B

IdLayer

HtmlLayer

TCPLayer

State C

IdLayer

HtmlLayer

TCPLayer

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 19 / 55

Communication Protocols: an example

State A State BState A State BState A State B

IdLayer

TCPLayer

State C

IdLayer

TCPLayer

State A State B

State A State B

State A State B

IdLayer

HtmlLayer

TCPLayer

State C

IdLayer

HtmlLayer

TCPLayer

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 19 / 55

Communication Protocols: an example

State A State BState A State BState A State B

IdLayer

TCPLayer

State C

IdLayer

TCPLayer

State A State B

State A State B

State A State B

IdLayer

HtmlLayer

TCPLayer

State C

IdLayer

HtmlLayer

TCPLayer

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 19 / 55

Communication Protocols: an example

State A State BState A State BState A State B

IdLayer

TCPLayer

State C

IdLayer

TCPLayer

State A State B

State A State B

State A State B

IdLayer

HtmlLayer

TCPLayer

State C

IdLayer

HtmlLayer

TCPLayer

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 19 / 55

Communication Protocols: an example

State A State BState A State BState A State B

IdLayer

TCPLayer

State C

IdLayer

TCPLayer

State A State B

State A State B

State A State B

IdLayer

HtmlLayer

TCPLayer

State C

IdLayer

HtmlLayer

TCPLayer

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 19 / 55

Communication Protocols: an example

State A State BState A State BState A State B

IdLayer

TCPLayer

State C

IdLayer

TCPLayer

State A State B

State A State B

State A State B

IdLayer

HtmlLayer

TCPLayer

State C

IdLayer

HtmlLayer

TCPLayer

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 19 / 55

Communication Protocols: an example

State A State BState A State BState A State B

IdLayer

TCPLayer

State C

IdLayer

TCPLayer

State A State B

State A State B

State A State B

IdLayer

HtmlLayer

TCPLayer

State C

IdLayer

HtmlLayer

TCPLayer

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 19 / 55

Communication Protocols: an example

State A State BState A State BState A State B

IdLayer

TCPLayer

State C

IdLayer

TCPLayer

State A State BState A State B

State A State B

IdLayer

HtmlLayer

TCPLayer

State C

IdLayer

HtmlLayer

TCPLayer

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 19 / 55

The class ProtocolState

Derive from the class ProtocolState; implement enter()

public class EchoProtocolState extends ProtocolStateSimple {
public void enter(Object param, TransmissionChannel transmissionChannel)

throws ProtocolException {
UnMarshaler unMarshaler = createUnMarshaler();
String line = unMarshaler.readStringLine();
releaseUnMarshaler(unMarshaler);
Marshaler marshaler = createMarshaler();
marshaler.writeStringLine(line);
releaseMarshaler(marshaler);

}
}

getUnMarshaler

if (transmissionChannel == null || transmissionChannel.unMarshaler == null) {
return createUnMarshaler();

else
return transmissionChannel.unMarshaler;

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 20 / 55

The class ProtocolState

Derive from the class ProtocolState; implement enter()

public class EchoProtocolState extends ProtocolStateSimple {
public void enter(Object param, TransmissionChannel transmissionChannel)

throws ProtocolException {
UnMarshaler unMarshaler = createUnMarshaler();
String line = unMarshaler.readStringLine();
releaseUnMarshaler(unMarshaler);
Marshaler marshaler = createMarshaler();
marshaler.writeStringLine(line);
releaseMarshaler(marshaler);

}
}

getUnMarshaler

if (transmissionChannel == null || transmissionChannel.unMarshaler == null) {
return createUnMarshaler();

else
return transmissionChannel.unMarshaler;

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 20 / 55

Switch state

Avoid writing long switch statements

ProtocolSwitchState

protocolSwitchState.addRequestState("WRITE", new WriteState(Protocol.START));
protocolSwitchState.addRequestState("READ", new ReadState(Protocol.START));
protocolSwitchState.addRequestState("REMOVE", new ReadState(Protocol.START));
protocolSwitchState.addRequestState("QUIT", Protocol.END);
Protocol protocol = new Protocol();
protocol.setState(Protocol.START, protocolSwitchState);

Each protocol state is parameterized with the next state in the
automaton

START and END are the identifiers of the special start and end states

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 21 / 55

Connectivity features

Provide basic connectivity classes:

Node:
I container of executing processes (NodeProcess)
I provides features to receive and establish a session, e.g.: accept,

connect

SessionManager: keeps trace of all the established sessions

Session identifiers

Sessions are logical connections and independent from the low level
communication layer. Automatically chosen according to SessionId

Stream connections for TCP sockets (tcp-mysite.com:9999)

Logical connections if UDP packets are used
(udp-mysite.com:9999)

Local pipes (pipe-foobar)

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 22 / 55

Connectivity features

Provide basic connectivity classes:

Node:
I container of executing processes (NodeProcess)
I provides features to receive and establish a session, e.g.: accept,

connect

SessionManager: keeps trace of all the established sessions

Session identifiers

Sessions are logical connections and independent from the low level
communication layer. Automatically chosen according to SessionId

Stream connections for TCP sockets (tcp-mysite.com:9999)

Logical connections if UDP packets are used
(udp-mysite.com:9999)

Local pipes (pipe-foobar)

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 22 / 55

Session Starter

SessionStarter is an abstract class for establishing a session (both client
and server side):

public abstract class SessionStarter {
/** Accepts an incoming session. */
public abstract Session accept() throws ProtocolException;

/** Establishes a session. */
public abstract Session connect() throws ProtocolException;

/** Closes this starter, but not sessions created through this starter. */
protected abstract void doClose() throws ProtocolException;

}

Specific session starters should be provided for specific low-level
communication protocols; the framework provides TcpSessionStarter,
UdpSessionStarter and LocalSessionStarter (that uses local pipes,
useful for testing).

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 23 / 55

Example: creating a TCP session, server-side

int port = 9999;
ProtocolStack protocolStack = new ProtocolStack();
// possibly customize stack with additional layers
System.out.println("accepting connections on port " + port);
SessionStarter sessionStarter = new TcpSessionStarter(new IpSessionId(port));
Session session = protocolStack.accept(sessionStarter);
System.out.println("established session " + session);
sessionStarter.close();
// no more accepting sessions, but the established session is still up.
UnMarshaler unMarshaler = protocolStack.createUnMarshaler();
while (true) {

System.out.println("read line: " + unMarshaler.readStringLine());
}

The client side will be similar (but it will use connect instead of accept).

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 24 / 55

Abstracting from session starters

IMCSessionStarterTable: associates a SessionStarter class to a
specific SessionId identifier

I e.g., "tcp" → TcpSessionStarter

We can then abstract from a specific session type

method createSessionStarter(SessionId) returns the SessionStarter
associated to a specific session type.

Abstraction

Switching from a session type to another is just a matter of changing the
session identifier.

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 25 / 55

Abstracting from session starters

IMCSessionStarterTable: associates a SessionStarter class to a
specific SessionId identifier

I e.g., "tcp" → TcpSessionStarter

We can then abstract from a specific session type

method createSessionStarter(SessionId) returns the SessionStarter
associated to a specific session type.

Abstraction

Switching from a session type to another is just a matter of changing the
session identifier.

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 25 / 55

Binding protocols and sessions

public class GenericServer {
public GenericServer(String host, Protocol protocol)

throws ProtocolException, IOException {
SessionStarterTable sessionStarterTable = new IMCSessionStarterTable();
SessionId sessionId = SessionId.parseSessionId(host);
System.out.println("accepting session " + sessionId + " ...");
ProtocolStack protocolStack = new ProtocolStack();
Session session =

protocolStack.accept(sessionStarterTable.createSessionStarter(sessionId));
System.out.println("established session " + session);
System.out.println("starting protocol... ");
protocol.setProtocolStack(protocolStack);
protocol.start();
protocol.close();
System.out.println("protocol terminated");

}
}

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 26 / 55

Nodes & Processes

A participant to a network is an instance of class Node.

A node is a container of running processes (class NodeProcess).
I The programmer must inherit from NodeProcess
I and provide the implementation for method execute

A process can access the resources contained in a node and migrate
to other nodes.

A node keeps track of all the processes currently in execution.

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 27 / 55

Processes & proxies

Processes delegate most of their methods to the node they are
running in.

However, they do not have access to the node itself (to avoid security
problems).

This is achieved by using a proxy: the processes delegate to the proxy
and not directly to the node.

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 28 / 55

A process example

A process running a protocol

public class ProtocolThread extends NodeProcess {
/** The protocol this thread will execute. */
protected Protocol protocol;

public void execute() throws IMCException {
try {

protocol.start();
} finally {

close();
}

}

public void close() throws IMCException {
super.close();
protocol.close();

}
}
Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 29 / 55

Node coordinators

Node coordinators are super user processes:

Privileged processes

can execute connection and disconnection actions

cannot migrate

Standard processes cannot execute privileged actions.

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 30 / 55

A node coordinator example

Accepting connections

public class MyCoordinator extends NodeCoordinator {
SessionId sessionId;

public void execute() throws IMCException {
Protocol protocol = new MyProtocol();
accept(sessionId, protocol);
protocol.start();

}

public static void main(String args[]) {
Node node = new Node();
node.addNodeCoordinator(new MyCoordinator());

}
}

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 31 / 55

Another node coordinator example

Accepting connections (multi-threaded)

public class AcceptNodeCoordinator extends NodeCoordinator {
private ProtocolFactory protocolFactory;
private SessionId sessionId;
private SessionStarter sessionStarter;

public void execute() throws IMCException {
if (sessionStarter == null)

sessionStarter = createSessionStarter(sessionId, null);

while (true) {
Protocol protocol = protocolFactory.createProtocol();
addNodeProcess(

new ProtocolThread(accept(sessionStarter, protocol)));
}

}
}

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 32 / 55

Goals of the package mobility

Package org.mikado.imc.mobility

Make code mobility transparent to the programmer

All issues are dealt with by the package:
I code collecting, marshalling
I code dispatch
I dynamic loading of code received from a remote site

Provide abstract interfaces and implementations for Java byte-code
mobility

Used internally by the IMC protocols package to exchange
migrating objects, but can also be used as a stand-alone package

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 33 / 55

Moving code

Two possible approaches:

Automatic: the classes needed by the migrating code are collected
and delivered together with that code;

On demand: when some classes are required by code migrated to a
remote site, it is requested to the server that sent the code.

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 34 / 55

We choose automatic approach

Advantage

Comply with mobile agent paradigm:

the agent is autonomous when migrating

disconnected operations

the originating computer does not need be connected after migration

Drawback

Code that may be never used is dispatched

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 35 / 55

We choose automatic approach

Advantage

Comply with mobile agent paradigm:

the agent is autonomous when migrating

disconnected operations

the originating computer does not need be connected after migration

Drawback

Code that may be never used is dispatched

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 35 / 55

Kinds of mobility

Three kinds of mobility have been identified in the literature:

weak mobility: the dynamic linking of code arriving from a different
site;

strong mobility: the movement of the code and of the execution state
of a thread to a different site and the resumption of its execution on
arrival;

full mobility: the movement of the whole state of the running
program including all threads’ stacks, namespaces and other
resources. This is a generalization of strong mobility that makes the
migration completely transparent.

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 36 / 55

Kinds of mobility

Three kinds of mobility have been identified in the literature:

weak mobility: the dynamic linking of code arriving from a different
site;

strong mobility: the movement of the code and of the execution state
of a thread to a different site and the resumption of its execution on
arrival;

full mobility: the movement of the whole state of the running
program including all threads’ stacks, namespaces and other
resources. This is a generalization of strong mobility that makes the
migration completely transparent.

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 36 / 55

Kinds of mobility

Three kinds of mobility have been identified in the literature:

weak mobility: the dynamic linking of code arriving from a different
site;

strong mobility: the movement of the code and of the execution state
of a thread to a different site and the resumption of its execution on
arrival;

full mobility: the movement of the whole state of the running
program including all threads’ stacks, namespaces and other
resources. This is a generalization of strong mobility that makes the
migration completely transparent.

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 36 / 55

Code mobility in Java (and in IMC)

Unfortunately Java only provides weak mobility, since threads’ execution
state (stack and program counter) cannot be saved and restored

On arrival the process is simply executed from the start

It is up to the programmer to keep track of the execution state of the
process

However, all the process fields’ values are restored on arrivale

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 37 / 55

Code mobility in Java (and in IMC)

Unfortunately Java only provides weak mobility, since threads’ execution
state (stack and program counter) cannot be saved and restored

On arrival the process is simply executed from the start

It is up to the programmer to keep track of the execution state of the
process

However, all the process fields’ values are restored on arrivale

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 37 / 55

Java byte-code mobility

Starting from these interfaces, the package mobility provides concrete
classes that automatically deal with

migration of Java objects together and their byte-code;

deserializing transparently such objects by dynamically loading their
transmitted byte-code.

Figure: Main classes of the package

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 38 / 55

Migrating Java code

public class JavaMigratingCode extends Thread implements MigratingCode {
public void run() { /* empty */ }
public JavaMigratingPacket make packet() throws IOException {...}

}

the serialized object

the byte code of all the classes used by the migrating object (these
classes are collected by make packet using Java Reflection API)

Scalable to inheritance

make packet needs not be redefined in derived classes: it handles
subclasses transparently and automatically.

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 39 / 55

Migrating Java code

public class JavaMigratingCode extends Thread implements MigratingCode {
public void run() { /* empty */ }
public JavaMigratingPacket make packet() throws IOException {...}

}

the serialized object

the byte code of all the classes used by the migrating object (these
classes are collected by make packet using Java Reflection API)

Scalable to inheritance

make packet needs not be redefined in derived classes: it handles
subclasses transparently and automatically.

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 39 / 55

Collecting classes

getUsedClasses

protected void getUsedClasses(Class c) {
if (c == null || ! addUsedClass(c)) return ;

Field[] fields = c.getDeclaredFields() ;
Constructor[] constructors = c.getDeclaredConstructors() ;
Method[] methods = c.getDeclaredMethods() ;
int i ;

for (i = 0 ; i < fields.length ; i++)
getUsedClasses(fields[i].getType()) ;

for (i = 0 ; i < constructors.length ; i++) {
getUsedClasses(constructors[i].getParameterTypes()) ;
getUsedClasses(constructors[i].getExceptionTypes()) ;

}
...

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 40 / 55

Collecting classes

Some classes are excluded by the collection:

Classes belonging to standard libraries
I these classes are given additional privileges, thus they must be loaded

from the local file system

classes of specific packages (e.g., the IMC package) that must be
present in the remote sites

classes explicitly excluded by the programmer

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 41 / 55

Code Mobility: example

o:A

- B b

- imc.C c
+ Integer i

Integer

imc.C

A

B

o A B

o:A

- B b

- imc.C c
+ Integer i

Integer

imc.C

A

B

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 42 / 55

Code Mobility: example

o:A

- B b

- imc.C c
+ Integer i

Integer

imc.C

A

B

o

A B

o:A

- B b

- imc.C c
+ Integer i

Integer

imc.C

A

B

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 42 / 55

Code Mobility: example

o:A

- B b

- imc.C c
+ Integer i

Integer

imc.C

A

B

o A

B

o:A

- B b

- imc.C c
+ Integer i

Integer

imc.C

A

B

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 42 / 55

Code Mobility: example

o:A

- B b

- imc.C c
+ Integer i

Integer

imc.C

A

B

o A B

o:A

- B b

- imc.C c
+ Integer i

Integer

imc.C

A

B

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 42 / 55

Code Mobility: example

o:A

- B b

- imc.C c
+ Integer i

Integer

imc.C

A

B

o A B

o:A

- B b

- imc.C c
+ Integer i

Integer

imc.C

A

B

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 42 / 55

Code Mobility: example

o:A

- B b

- imc.C c
+ Integer i

Integer

imc.C

A

B

o A B

o:A

- B b

- imc.C c
+ Integer i

Integer

imc.C

A

B

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 42 / 55

Code Mobility: example

o:A

- B b

- imc.C c
+ Integer i

Integer

imc.C

A

B

o A B

o:A

- B b

- imc.C c
+ Integer i

Integer

imc.C

A

B

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 42 / 55

Code Mobility: example

o:A

- B b

- imc.C c
+ Integer i

Integer

imc.C

A

B

o A B

o:A

- B b

- imc.C c
+ Integer i

Integer

imc.C

A

B

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 42 / 55

Code Mobility: example

o:A

- B b

- imc.C c
+ Integer i

Integer

imc.C

A

B

o A B

o:A

- B b

- imc.C c
+ Integer i

Integer

imc.C

A

B

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 42 / 55

Code Mobility: example

o:A

- B b

- imc.C c
+ Integer i

Integer

imc.C

A

B

o A B

o:A

- B b

- imc.C c
+ Integer i

Integer

imc.C

A

B

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 42 / 55

Code Mobility: example

o:A

- B b

- imc.C c
+ Integer i

Integer

imc.C

A

B

o A B

o:A

- B b

- imc.C c
+ Integer i

Integer

imc.C

A

B

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 42 / 55

NodeClassLoader

Each site willing to accept migrating code will internally use a
NodeClassLoader provided by the package

When a migrating code is received from the network in a
JavaMigratingPacket

its classes are stored in the NodeClassLoader internal table

the object is deserialized

during deserialization, needed classes are loaded by
NodeClassLoader from the internal class table

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 43 / 55

Retrieving class byte code

When a MigratingPacket is created the byte code of the collected
classes is retrieved:

by the local file system, in the originating site

by the NodeClassLoader table in the other sites

This enables a migrating code to visit many sites in sequence.

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 44 / 55

Dpi programming model

Dpi is a locality-based extension of π:
I Processes are distributed over a set of nodes (or locations) each of

which is identified by a name or locality.

Like in π calculus, processes interact each other via message passing
over channels.

Only local communication is permitted
I Two processes can interact only if they are located on the same node.

Processes can change their execution environment performing action
go .

Dpi does not assume a specific network topology
I a variant of Dpi, DpiF, considers explicit link

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 45 / 55

Dpi programming model

Dpi is a locality-based extension of π:
I Processes are distributed over a set of nodes (or locations) each of

which is identified by a name or locality.

Like in π calculus, processes interact each other via message passing
over channels.

Only local communication is permitted
I Two processes can interact only if they are located on the same node.

Processes can change their execution environment performing action
go .

Dpi does not assume a specific network topology
I a variant of Dpi, DpiF, considers explicit link

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 45 / 55

Dpi syntax
Systems

M,N ::= 0 Empty
| M|N Composition
| (νe).N Restriction
| l

[[
P

]]
Agent

Threads
P,Q,R ::= stop Termination

| P|Q Composition
| (νe)P Restriction
| go u.P Movement
| u!〈v〉.P Output
| u?(X).P Input
| rec A.P Recursion
| A Process Identifier
| if u = v then P else Q Matching

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 46 / 55

JDpi implementation...

JDpiProtocol:
I implements the communication protocol between Dpi nodes;

JDpiProcess:
I implements a generic Dpi process;
I is a JavaMigratingCode.

JDpiNode:
I implements a Dpi node;
I provides a computational environment for JDpiProcesses;
I manages local channel interactions;

JDpiLocality:
I is an abstraction for node names

Two kinds of topology have been implemented:
I flat;
I a la DpiF.

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 47 / 55

Implementing Dpi
Node

Dpi nodes provide:

a computational environment for processes;

functionalities for processes interactions

Implemented as...

an extension of org.mikado.topology.Node;

new methods for managing channels:
I creation;
I input;
I output.

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 48 / 55

Implementing Dpi
Node

Dpi nodes provide:

a computational environment for processes;

functionalities for processes interactions

Implemented as...

an extension of org.mikado.topology.Node;

new methods for managing channels:
I creation;
I input;
I output.

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 48 / 55

Implementing Dpi
Processes

a Dpi process (JDpiProcess) is implemented as a subclass of the
class NodeProcess

I each process has to provide method body();
I implements the JavaMigratingCode;
I allows to easily migrate a process to a remote site.

Processes can be added to a node for execution with the method
addProcess

Each process interacts with the hosting node using a JDpiNodeProxy
I provides an access to node methods;

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 49 / 55

Implementing Dpi: Example 1
Processes

rec X .ex?(u).go@u.X

Implemented in Java

class MyProc extends JDpiProcess {
public void body() {

JDpiChannelName<JDpiLocality> inC =
new JDpiChannelName<JDpiLocality>("ex");

JDpiLocality u = in(inC);
go(u);

}
}

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 50 / 55

Implementing Dpi: Example 2
Processes

νa.ex!a

Implemented in Java

public void body(){
JDpiChannelName<String> a = new JDpiChannelName<String>();
JDpiChannelName<JDpiChannelName<String>> outChannel =

new JDpiChannelName<JDpiChannelName<String>>("ex");
out(outChannel, a);

}

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 51 / 55

Implementing Dpi: Example 3

An agent that migrates over a set of electronic markets, in search of a best
price. At the end of the search, the agent migrates to locality home and
provides its result on channel result.

Implemented in Java

public void body() {
while (count < localities.size()) {

JDpiChannelName<Article> c = new JDpiChannelName<Article>(art);
Article a = in(c);
if ((lowestPrice == 0)||(a.getPrice()<lowestPrice)) {

locality = localities.get(count);
lowestPrice = a.getPrice();

}
if (++count < localities.size())

go(localities.get(count));
else

go(home);
}

}
}
Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 52 / 55

Metrics

The Java implementation JDpi is composed of

about 1000 lines of code

only 28 classes:
I provide 152 methods,
I the average number of lines per method is 3.5

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 53 / 55

Ongoing works

Implementing security policies
I Calculus of Membranes;
I Types for access control;
I Logical specification of security policies;
I . . .

Consider process interaction based on XML
I query and pattern matching

Reimplement Klava (the run-time system for Klaim) using IMC

Integration in Eclipse

Services (project Sensoria)

Add features to deal with services

Single out recurrent mechanisms of calculi for SOC (e.g., SCC,
COWS, . . .)

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 54 / 55

Ongoing works

Implementing security policies
I Calculus of Membranes;
I Types for access control;
I Logical specification of security policies;
I . . .

Consider process interaction based on XML
I query and pattern matching

Reimplement Klava (the run-time system for Klaim) using IMC

Integration in Eclipse

Services (project Sensoria)

Add features to deal with services

Single out recurrent mechanisms of calculi for SOC (e.g., SCC,
COWS, . . .)

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 54 / 55

References

http://imc-fi.sourceforge.net

papers

documentation

GPL software

Thanks!

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 55 / 55

References

http://imc-fi.sourceforge.net

papers

documentation

GPL software

Thanks!

Lorenzo Bettini (DSI@FI ∧ DI@TO) Building Applications with IMC Miniscuola WOA, Sept. 2007 55 / 55

	Outline
	Motivations
	The IMC Framework
	Protocols
	Topology
	Mobility

	Implementing Dpi in IMC
	Conclusions

