

Abstract—In this paper we present the European project

named E-Support, aimed to the maintenance companies which

work on the field, away from the central headquarters. The main

goal of E-Support is to help the field engineers and technicians to

access the knowledge base of the company. They will connect to

remote servers by using mobile devices in order to get

information about vendors, customers, plants, parts and

download technical documents. The whole system will be

implemented by a multi-agent platform running agents on mobile

devices and server agents that provide the services. A particular

emphasis will be placed on the contribution of D’Appolonia

regarding the document retrieval system.

Index Terms—Enterprise, multi-agent, document, indexing,

clustering, ontology.

I. INTRODUCTION

-SUPPORT is a collective European project which involves

RTD (Research and Technology Development)

companies, SMEs (Small and Medium Enterprises), and

associations of maintenance companies. The project is

addressed to these maintenance companies which send small

teams of engineers and technicians at the customer’s, in order

to fix, upgrade or simply manage a plant. Often the personnel

which works away from the headquarters needs information in

real-time regarding the customers, vendors, parts to replace

and any type of data useful during the everyday work activity.

The aim of E-Support is to provide these data on the field,

directly on the plant, connecting a mobile device to the remote

server containing all the information owned by the company

and the information offered by the associations (as regulations,

norms, standards, etc.) that reunite maintenance companies. E-

Support enables technicians to use every type of mobile

device: mobile phones, smart phones, PDAs (Personal Digital

Assistant), and notebooks. It is a task of the remote system to

display on the mobile device screen only the information that

the device is able to visualize. The entire system runs over a

multi-agent platform. Considering the need to run remote

agents representing the mobile devices, we chose the well-

known multi-agent system (MAS) JADE [1], with the

extension for mobile devices named LEAP [2].
A field service engineer (FSE) which wants to access the

enterprise knowledge base, connects his mobile device to the

available network infrastructure (GPRS, UMTS, Wi-Fi, Wi-

Max) and contacts (through his mobile agent) a remote agent

running on the server platform. This remote agent (called

interface agent) processes the query and forwards the related

tasks to the agents in charge of the databases management and

the documents collection. The interface agent then collects the

results of these tasks, generates an html page considering the

display capabilities of the mobile device, and sends it to the

FSE.

The role of D’Appolonia in E-Support is to manage the

documents collection providing advanced tools able to classify

them by using clustering techniques over the usual indexing of

the documents corpus.

In the following sections are illustrated the E-Support

project ensemble (section II), the MAS solution (section III),

and the documents retrieval system (section IV), highlighting

the contribution of the agents in the project success.

II. THE E-SUPPORT PROJECT

A. Project context

The first task of the project was the analysis of a market

study addressed to 65 European maintenance companies from

Romania, Italy, Holland, Spain, and Slovakia. Most of the

maintenance companies have less than 20 workers (35.5%) or

21 to 100 workers (38.7%). The survey shows that the 47.6%

of the companies covers different maintenance sectors. The

23.8% operates in the chemical sector, the 22.2% in the

construction field, the 15.9% in automotive, the 15.9% in the

alimentary field. Few companies work in the ICT sector

(4.8%). The 89.8% handles technical data in electronic format:

especially by using office tools, cad, and CMMS

(Computerized Maintenance Management System). No one

seems to use databases.

The communication devices used by technicians are mainly

cell phones (83% of companies), notebooks (55.4%), smart

phones (15.4%), PDAs (10.8%) and tablet PCs (3.1%).

The interviewed companies assert that, by using the

existing tools, the detected difficulties concern the trouble to

find accurate (55.4%) and complete (33.8%) information, to

file the info on paper (32.3%), the lack of immediate responses

from the manufacturers (30.8%), to get updated information

(24.6%), and the waste of money (24.6%) and time (20.0%).

Considering the emerging context, the maintenance

companies which fill out the questionnaire, judge the E-

Support project useful (30.6%) or quite useful (56.9%).

On the basis of these results, the E-Support tool is

conceived as to limit the costs incurred by the SMEs, to easily

find significant information and especially to reach the field

A Multi-Agent Platform Supporting

Maintenance Companies on the Field

Andrea Passadore, Giorgio Pezzuto, D’Appolonia S.p.A. Via San Nazaro 19, 16145 Genova, Italy

E

service engineers on the field. For these reasons, the E-Support

system is designed as a service provider managed by

maintenance associations and distributed to the subscribing

SMEs. Figure 1 shows the high level architecture of the

system. Four major challenges are recognized, in order to

provide a useful tool:

• The document retrieval system (named FSE-

Assistant) for the management of documents and the

easy discovery of them.

• The knowledge sharing and learning (FSE-Master)

for the management of databases and the training of

the workers.

• Wireless mobile client infrastructure: it regards the

network infrastructure, the security, and the

compression of transmitted data.

• The multi-agent platform which hosts the whole

service, mobile devices included.

B. Document retrieval system

The aim of the document retrieval system is to allow

technicians on the field to find information contained in textual

documents, datasheets, cad files and pictures. This large

amount of electronic documents is hosted in a file server

staying at the provider server farm. The tool the E-Support

project wants to delivery is not a mere search engine, able to

index textual documents and to systematically return a list of

files containing a word: the tool is also able to order the

documents into clusters [3] namely categories (and sub-

categories) which contain documents belonging the same

topic. These topics are automatically selected by advanced

clustering algorithms. An interesting objective is the indexing

of non-textual documents. In this case is useful to manually

label these files with tags. The implementation of the

document retrieval system is deeply discussed in section III.

C. Knowledge sharing and learning

The goal is to develop an intelligent open knowledge

sharing and learning system able to provide a technical

training to FSEs who work on site. The FSE-Master

comprehends intelligent user-profiles and personalization

capabilities, in a user-friendly web-based context. The learning

audience benefits from a modular step-by-step approach,

following several training processes: learning, practicing,

testing, and assessing. According to the E-Support essence, the

field service “students” can access to the “classroom”, when

and where they need, through their mobile devices. The e-

learning tool is enriched with the possibility to share a

personal knowledge with other colleagues, offering own

experiences in helping them to solve a problem.

D. Wireless mobile client infrastructure

 The main problem in reaching the workers on the field is

the network infrastructure. For this reason the E-Support

system must be versatile, offering different media to connect a

mobile device to the central server. Considering the low costs

level of the E-Support product, oriented towards the SMEs, the

mobile device is able to manage different standards, choosing

among those that are available on site. The E-Support tool

must tolerate several bandwidths and rate profiles, self-

adapting the throughput to the current context. Several

wireless technologies have been evaluated considering their

speed, price, compatibility with the devices, and coverage. The

E-Support project took into account existing and incoming

standards [4] as: Wi-Fi, Wi-Max, UMTS, GPRS, and Edge.

The main considerations regard the coverage and the speed.

Wi-Fi is quite widespread in offices, factories and production

areas and it has an adequate bandwidth. UMTS and GPRS

cover every populated area of Europe but they denote a low

bandwidth. The Wi-Max technology represents the best

solution, but, at now, is not commercialized and not at all

diffused. Considering these points for the E-Support system,

the main wireless medium is the Wi-Fi where possible,

switching to GSM standards otherwise. The Wi-Max will be

monitored in order to introduce it in the system as soon as

possible.

Fig. 1: the whole E-Support service.

Other issues related to the communication layer are the

security of transactions and the compression of transmitted

data [5]: S-HTTP and DES (Data Encryption Standard) ensure

safe communications and the ZIP method to compress the

exchanged files.

The connection switching and security functionalities are

hidden to the end-user who can use the E-Support device

without caring the communication status.

E. Multi-agent architecture

The motivations that encourage us to adopt a multi-agent

platform concern especially:

• The dynamicity of the system, considering the mobile

devices, the different data sources, the needed

intelligence and pro-activity of the requested software

components.

• The scalability of the system, which has to be adapted

to different scenarios, with enterprises having different

sizes and requirements.

• The naturally distributed environment.

To implement the E-Support multi-agent society, the JADE

platform has been chosen, due to its good reputation, stability,

and mainly the possibility to distribute agents and agent

containers over a network of mobile devices, by using the

JADE LEAP extension. Another consideration is the fact that

other E-Support components are written in Java and therefore

they are easily mixable with the multi-agent platform.

The multi-agent platform is deeply investigated in the next

section.

III. THE MULTI-AGENT PLATFORM

A. Introduction

In order to design a multi-agent system which accomplishes

the main requirements of E-Support, some considerations are

reported:

• The connection among mobile devices and the core

platform is wireless.

• The connection could be slow, considering the use of

different wireless technologies (GPRS, UMTS, Wi Fi,

and Wi-Max).

• The connection could be affected by line losses.

• Some mobile devices could have strict restrictions to

display downloaded files and information and to

execute weighty programs.

• The access to centralized information is concurrent.

• The platform must be scalable and adaptable to

different kind of companies, also by using pre-existent

tools and databases.

• Different programmer teams will work on the system.

Agent roles help the teams to integrate their modules.

Ontologies modeling agent interactions are a tool that

improves the integration of these service modules.

For these reasons, the architecture of the system takes into

account that every hard computation is in charge of the server

side, letting the mobile device free (especially if it is a PDA or

any other device with limited resources). The mobile device

hosts only one agent, able to connect to the remote platform,

sends queries to the system, receives the results and browses

them. This agent, called front-end agent, represents the end-

user, namely the technician on the field who wants to exploit

the functionalities of the E-Support platform.

The front-end agent is able to interact with back-end agents

hosted on the server side. Back-end agents provide

differentiated services to manage databases, the indexing

engine, the clustering engine, and the authentication service.

These agents can be cloned and the multi-agent system server

can be split into different computers, in order to increase

performances or to adapt to extended companies with

particular requirements. The JADE cloning function and the

agent containers are useful tools, in this sense.

The front-end agent does not interact directly with the

back-end agents, but leans on the interface agent, which offers

an interface of the server side services. It is a sort of mediator

which collects the queries coming from the end user and

reroute them to the back-end agents. Details about the

interface agent and other agents are shown in the next

paragraphs.

B. Front-end agent

A front-end agent is merely a browser which displays

results sent by the interface agent which is talking with the

agent. Every heavy computation is on the back of core agents

and especially on the back of an interface agent.

When a user wants to connect to the E-Support platform

through a mobile device, the corresponding front-end agent

contacts the Directory Facilitator (DF, the yellow pages

service, embedded in JADE) of the platform to discover the

name of a free interface agent. The DF responds and the front-

end agent opens a conversation with the suggested interface

agent. Then, the user must authenticate himself, sending to the

interface agent his username and password. Automatically, the

front-end agent communicates the mobile device type too, in

order to send, in response to the incoming queries, only the

displayable information.

The user is now able to query the system. Every

communication is in charge of the interface agent, which

routes requests to the core agents. Every front-end agent has

different behaviours, differentiated by user privileges. The

intention is to consider every mobile device at disposal of each

technician on the field, regardless of his rank. Every agent has

a complete set of behaviours, raised only if the current user has

the required rights.

Regarding the front-end agent, JADE LEAP allows

programmers to split the related agent container to a front-end,

hosted on the mobile device and a back-end hosted on the

server, in order to move the infrastructure of the agent

container on the server side, avoiding an overload of the

mobile device.

C. Interface agent

The main task of an interface agent is the mediation among

front-end agents and core agents. The aim of interface agents

is to book core agents just the time necessary to serve out the

query, without waste of time due to slow connections and line

losses. The interface agent collects the queries of the front-end

agent and redirects them to the core agents, then it gets the

query result and releases the core agent; achieved the

information, the interface agent composes a presentation using

html tags, considering only those records that can be displayed

by the mobile device. The information about the type of the

mobile device involved in the communication can be retrieved,

asking the authentication agent.

Every interface agent has more behaviours, every one

specialized to interact with a core agent. Depending on the

company size and the number of field technicians, the interface

agent can be configured to serve only one front-end agent at a

time or to serve a strict number of front-end agents at the same

time.

D. Authentication agent

It manages user’s credentials and maintains his status (i.e.

if he is online and his mobile device type). The information

about the agent status is useful to compose a presentation page

taking into account the display capabilities of the mobile

device. For this reason, the interface agent contacts the

authentication agent to get these data, at the moment of the

composition of an html page.

E. Database agents

They manage the knowledge base of the company. The

database agents interrogate the database using SQL queries.

Implementing different behaviours, it is possible to manage

different types of database, considering the pre-existent tools

at the company’s disposal (e.g. Oracle, SQL Server…). The

database contains information about customers, vendors,

suppliers, parts, components and data supporting e-learning

tools.

F. Text indexing agents

They index large amount of documents (doc, pdf, txt, html,

etc.) reading selected folders and downloading updated

versions of manuals from suggested web sites.

These agents (one or more, depending on the company size

and possible specializations) write the indexing results to a

centralized index, managed by a specialized agent, with the

main task to coordinate the concurrent access to the

centralized index. We distinguish among agents that read text

documents hosted in a file server and that read web pages.

G. Clustering agent

The clustering agent processes the index created by

indexing agents, in order to execute the query sent by remote

users (via the interface agent). It analyzes the index and returns

a list of clusters, also considering an ontology of relevant

terms concerning a certain domain. The returned list of

clusters and documents is raw and must be processed by the

interface agent, to erase unreadable files (considering the

mobile device type) and to present the result in human

readable template adaptable to different kind of displays. More

details about clustering agent and its services are reported in

section IV.

H. Web agent

The web agent is in charge to manage interactions between

the platform and the customer, who can get information about

the status of the maintenance process or submit a new fix

request.

The agent submits queries to the interface agent, as a

normal end-user. The customer can also interact with the

maintenance company through usual channels, as the telephone

or email. In this case is the human operator to insert o to

communicate data about a fix action.

I. Other agents

The previous agents are the most significant ones, but we

can consider the introduction of other agents in order to

manage integration with existent CMS (Content Management

System) and other management tools. These agents denote

behaviours which allow conversion among the E-Support

internal knowledge representation and third-parts knowledge

bases. They are easy to introduce in the MAS, if we consider

them as a sort of “special” end users interacting with the

interface agents and then the core agents.

J. Related works

Due to the complex nature of the whole E-Support project,

it is difficult to find and describe similar works that involve

every aspect of this project. Relating the document retrieval

system and multi-agent technology, several proposals are

described in literature. The management of electronic

documents is in turn, a complex problem that involves issues

as scalability, high dimensionality, content meaning, etc.

The split of the entire complex problem into circumscribed

aspects is a common approach and the multi-agent system

technology is a valid help to solve and manage these contexts.

A solution aimed to multimedia documents is proposed in

[13] where the main goal is to efficiently accesses a scene of a

video without a brute force approach (by using forward and

rewind functions). As an example is reported the recording of

a conference event; the system, based on specialized agents,

will be able to select a scene given a query like (“give me the

scene where T presents its paper). The provided solution is to

define agents specialized to process single media (video,

audio, text) and other agents able to locate a face in a frame, to

identify the selected face, and to check if the person is

speaking. An agent is able to analyse the audio in order to

extract intelligible words (or, more easily, to analyse a text

describing a scene provided by a human operator). The

orchestration of these agents allows the system to perceive the

goal.

Another solution aimed to the indexing of document in a

team of users (both end-users and owners of documents) is

described in [14]. An agent runs on every team member PC; it

is able to maintain an updated index of data stored in the PC

and to reply to the queries given by the team member. This

agent contacts its counterparts running on the other members’

PCs, in order to support a parallel document search.

Considering the architecture of the team network, the agent

running on a PC interacts with peers synchronously where

possible, asynchronously (via mail) where firewalls or other

systems inhibit the direct communication.

In [15] is illustrated a prototype which is quite similar with

the E-Support document retrieval system. The system offers

facilities to index and share information both in local

repositories and in the WWW. Every user can organize the

retrieved information in hierarchical categories (a sort of static

cluster) with the help of a personal agent which is able to

interact with other personal agents in order to share local data

among end-users. Other agent roles are defined: the

matchmaker agents help personal agent to find the peers that

manage significant information for a particular end-user query.

Group agents are particular personal agents that manage

common repositories, not directly linkable to a specific end-

user. Finally the knowledge agent (that is under development)

has the main feature to manage knowledge bases related to

particular domains in order to improve the results of end-user

queries.

Regarding the clustering techniques involving multi-agent

systems, a proposed solution [9] split the clustering process,

usually centralized, in a distributed environment, where

clustering agents manage local repositories and learn from the

results of cooperative peers.

Another proposed system involves swarm intelligence and

in particular the self-organization behaviour of ants applied to

large amount of documents.

K. A demonstrative scenario

In order to explicate the main functions of these agents, a

simple interaction of a remote user is reported (figure 3).

A technician on the field must access to the company

knowledge base to search information about a hot-water

heater to repair.

Fig. 2: an example of agent interactions.

He is on the field, namely in the boiler room, so he can

connect to the Wi-Fi LAN of the office. Through Internet, the

front-end agent contacts the remote server and asks the DF in

order to find a free interface agent (see in figure 2 the agent

interactions for a search query). Established the channel

between front-end agent and interface agent, the end-user must

authenticate himself. The front-end agent sends username,

password and mobile device type to the interface agent which

reroutes the information to the authentication agent. Once the

user is logged, he can send queries to the remote system. As an

example he wants to find all the documents containing the

word “heater”. He types the word “heater” and its front-end

agent sends the query to the interface agent.

The interface agent forwards the query to the clustering

agent. Ignoring for the moment the detailed functioning of the

information retrieval system, the clustering agent reads the

index of documents owned by a particular indexing agent and

then returns a hierarchical list of categories containing all the

documents belonging to knowledge base of the company, in

which is contained the word “heater”. The categories represent

different topics regarding a heater, depending on the

occurrence of most significant words in every document. If the

mobile device used by the user does not support a type of

document (for example ps files), the interface agent prunes

from the clustering list all the ps files. Therefore, the cluster

list is converted by the interface agent in an html page, ready

to be sent to the front-end agent.

Fig. 3: the remote connection of a worker.

The technician is now able to navigate the clusters, in order

to select the most relevant documents and download them.

Read the documents, for example technical manuals, the

user decides that the heater must be repaired, replacing a

particular component. In this case, the technician can

interrogate the central database to discover the closest supplier

of this component, its price, and relative instructions. As usual,

the front-end agent contacts the interface agent, which reroutes

the queries to the apposite database and composes the html

page containing the results.

IV. DOCUMENT RETRIEVAL SYSTEM

A. Introduction

The contribution of D’Appolonia in the E-Support project

concerns the document retrieval system. As mentioned in the

previous sections, this system is able to receive the queries of

the user, in order to find documents and every other useful file

for the everyday work activity. The goal is to provide a smart

system which allows the indexing of the entire document

corpus of the company and the automatic clustering of

documents on the basis of the searched word. E-support wants

to ease the work of technicians and engineers on the field and

this essence is also applied to the document retrieval system.

The use of clustering techniques represents a first automatic

partition of documents in the most relevant topics concerning a

particular maintenance field. The solution is reported in the

next paragraphs.

B. Clustering techniques

The document clustering is an unsupervised learning

technique that furnishes a hierarchy of document which

facilitates the browsing of a collection of documents.

Documents belonging the same cluster have a high degree of

similarity. In general, during the clustering generation process,

a document is represented by a vector that contains the most

significant words of the selected document. A pre processing

process could be useful to remove stop words, forbidden

words, etc. Some clustering techniques allows the

extrapolation of the most significant words considering the

entire document set, in order to focus a set of expressions with

a significant discriminating power. Meaningful elements to

classify a clustering algorithm are the following:

• High dimensionality: usually, in a document there are

thousands or tens of thousands relevant terms. Each

term represents a dimension of the document. Natural

clusters are not selected in the full dimensional space,

but in subspaces formed by a set of correlated

dimensions. The identification of these subspaces is

often difficult.

• Scalability: the algorithms must work fine with both

limited and large sets of documents.

• Accuracy: documents belonging the same cluster

must be similar. External evaluation methods for the

accuracy measure are developed [10].

• Meaningful cluster description: every cluster must be

described with a significant label which helps the user

to browse the cluster hierarchy.

• Prior domain knowledge: several algorithms can be

tuned with input parameters. Oftentimes, the user is

unable to set up these parameters. In this case the

algorithms should not sensitively decrease the

performances.

Clustering algorithms can be classified into main

categories:

• Hierarchical clustering methods: they can have a

bottom-up approach, i.e. they generate a set of

clusters and then they merge the most similar clusters;

the top-down approach, on the other hand, divides

every cluster in sub-clusters, until an end condition is

reached.[11]

• Partitional clustering methods: they consist in the k-

means methods and variants. Every document is

associated to the closest centroid (considering the

similarity), starting from a set of k random centroids.

The algorithm selects a centroid to split and repeats

the process, until the number of k cluster is reached.

[11]

• Frequent item-set based methods: the idea is that

many frequent items (namely terms) should be shared

within a cluster and different cluster should have

more or less different frequent items. The result is not

a hierarchical clustering; in order to introduce this

feature, the notion of item-set is created. [12]

C. Architecture

The figure 4 shows the proposed architecture of the system.

The whole system is based on the collection of textual

documents and other type of files (as pictures, cad files,

datasheets, etc.). These documents can be tagged, in order to

add useful information to the single file. This is helpful for

textual documents, in order to add detailed information about

the nature of the document; this option becomes necessary in

case of non-textual documents. These tags are defined in

specific ontologies: one for the description of document types

and one containing the relevant entities of a particular

maintenance sector (for example computer maintenance,

electrical, heating, building, etc.). The administrator of the

system or a skilled employee can create an instance of a

particular concept and then attach it to the selected document.

Fig. 4: the document retrieval system architecture.

The textual documents are indexed by the Apache Lucene

indexing engine. An indexing agent continuously reads the

document corpus and updates the generated index. Another

similar agent supervises a group of selected web sites and the

result of the web indexing is merged with the main one.

The clustering engine taps into the Lucene index and the

set of tags in order to provide a more efficient clustering. For

the E-Support we select the Carrot² clustering engine, which

implements the most advanced clustering algorithms.

Authenticated users exploit the functionalities of Carrot² and

administrators are able to tune the parameters of Carrot² and

configure the whole system.

D. The document corpus

The work of a maintenance technician is not only based on

the hint of textual documents. Maintenance companies provide

precise requirements regarding the sharing of pictures of plants

and parts, with attached comments containing the experiences

of the colleagues. These companies consider helpful the

indexing of cad files containing the technical schema of the

plants, datasheet with details of the components, and maps of

buildings, compounds and cities.

E. Tags and ontologies

An ontology containing the different types of documents is

going to be developed. The aim of this ontology is to provide a

complete catalogue of the possible documents owned by a

maintenance enterprise. For example, the document ontology

contains the textualDocument class, with properties hasTitle,

hasTopics, and hasComment. The textual document class is

specialized in different subclasses, e.g. the book class with

properties hasTitle, hasTopics, hasComment (all inherited

from the textual document class), hasISBN, hasEditor; the

webpage class with properties hasTitle, hasTopics,

hasComment, hasURL etc. Another class (disjoint from the

textualDocument class) could be the picture class, with a

property for the technician comments, the location, the date

etc.

Regarding the maintenance ontologies, a generic

maintenance ontology will be delivered and different domain

specific ontologies will be built on the basic one. The survey

involving European maintenance companies shows that these

companies cover different maintenance sectors and often the

same enterprise manages several fields. Therefore, specific

ontologies are the solution in order to deeply customize the

functioning of the document retrieval system, especially

increasing the performances of the clustering engine.

For example, if the company does maintenance in the

computer field, an ontology based on Information Technology

will be built. The ontology will contain the most relevant

entities of the computer discourse domain. The components of

a PC will be described. As an example a class describing a

chip of RAM, handles properties like hasManufacturer,

hasCapacity, hasDimension etc.

Both the ontologies are used to catalog a document. For

instance, we have a web page containing specific information

about RAM chips and then the human operator can add a

series of tags describing the page: a tag that instances the

concept of the web page, one or more tags instantiating the

concept RAM, and so on. The ontologies are developed by

using the Protégé ontology editor [13] and the OWL language

[14].

F. The indexing engine

To furnish a valid tool for the document clustering, the

whole system must be based on a robust indexing engine, able

to index efficiently a large amount of files, customizable, open

source and possibly written in Java. The Apache Lucene

project corresponds perfectly to these requirements. Lucene

offers good performances in terms of RAM and CPU usage

and disk space occupation. It allows the definition of

customized file parsers in order to read every type of file. The

complete API of Lucene allows the implementation of an agent

able to manage the indexing process and the management of

the resulting index. The indexing engine provides functions to

merge different indexes, to build an index in incremental mode

or batch mode; it allows the simultaneous searching and

updating and the research through several fields as the title, the

author, the content, etc.

G. The clustering engine

It is the core of the document retrieval system. The selected

tool is the Carrot² clustering engine. It is a Java open source

software that automatically organizes the search results into

thematic categories. At now Carrot² supports 5 algorithms:

Fuzzy Ants [15], HAOG-STC, Lingo [16], Rough K-Means

[17], STC [18]. The clustering engine can exploit different

indexing engines both online as Google, MSN, Yahoo, and

offline as Lucene.

Fig. 5: the clusters generated by Lingo3G compared with the Carrot² ones.

There exists a commercial version of Carrot², named

Lingo3G, which provides improved features and

performances. It is able to get hierarchical clusters, to filter or

boost suggested cluster names, supports the definition of

synonyms and multilingual clustering. The APIs of the free

version and the commercial one are quite similar, then, in the

E-Support project, we intends to provide both the services and

allow the companies to chose the level of accuracy they need

buying the license of the commercial version or using the open

source one. In parallel with the Carrot²/Lingo3G clustering we

execute a sort of clustering based on the existing tags. The

clustering based on tags is more accurate, because it derives

from a human classification. Even if the automatic clustering is

less accurate and smart, the results of the tests we did are

encouraging. The results of the two clustering processes are

merged, obviously highlighting the ones coming from the tag

clustering.

Another interesting feature connected to the clustering is

the extension of the thematic classification to the terms

belonging to the maintenance ontology which are related to the

current searched keyword (only if the keyword belongs to the

ontology) through usual ontological relations as: is subclass of,

is a part of, same as etc.

Fig. 6: sub-clusters for the "Java" cluster (Lingo3G).

All these features are managed by the clustering agent

which runs different behaviours that implement the

aforementioned methodologies of clustering.

Some testing results are shown in figures 5 and 6: the

clustering engine prototype ran on an index containing about

800 indexed documents (pdf and doc file). The system returns

a collection of clusters for the keyword “message”. Figure 5

reports a comparison between the Lingo3G results and the

Carrot² ones. Figure 6 reports a detail regarding a sub-cluster

generated for the “Java” cluster. Considering these results, the

Lingo3G engine returns a high number of significant clusters.

The cluster labels appear more accurate and sub-clusters are

on topic with the parent cluster.

H. The user functionalities

As emerges from the requirements analysis, the user (regarding

the document retrieval system) is able to access the knowledge

base of the company represented by the collection of

documents and other files, through different ways:

• Simple search: the user enters a keyword and the

system returns a set of clusters (figure 7).

• Conceptual search: the user instantiates a concept

coming from the document or the maintenance

ontology. The system returns another set of clusters

based on the instance of the concept.

• Directories: they are a sort of static clusters: typical

topics related to the specific maintenance sector. They

are set a priori.

• Documents chronology: the list of recent documents

read by the user.

• New and updated documents: a list of the new

documents and a report of the updated ones.

I. The administrator features

Regarding the document retrieval system, the administrator

manages the entire documents corpus. He can add, update and

modify documents, and he can manage the tags linked to every

file. A particular function of the administrator is the possibility

to create user profiles. A user’s profile describes a particular

category of end users. In a maintenance enterprise the workers

are specialized in a maintenance sector, therefore for each

worker profile, the administrator can select a particular

maintenance ontology, a particular set of documents

directories, a certain list of preferred cluster labels, and a

customized Lingo3G/Carrot² setup. The administrator can link

every user to a profile in order to improve the performances of

the document retrieval system.

Fig. 7: a demo for the simple search function.

V. CONCLUSIONS

The E-Support project is currently under development. At

now, the European partners are going to validate the final

architecture proposal and the implementation of the system

will start as soon as possible. Regarding the document retrieval

system, both the relative agents and the architecture seems to

be consolidated.

Concerning the performances of the clustering engine, we are

stressing the two versions: Carrot² and Lingo3G. Obviously

the two tools are not a magic box and the results are less

efficient than the human classification. Nevertheless the results

are encouraging and fairly positive: the test tools we have

developed works on thousands of technical documents and

scientific papers and they have become an utility for the

everyday activity. We think that through an opportune

calibration, and with the help of ontologies the developed tools

supporting the front-end agent, will make it a very smart agent:

a useful partner for each technician on the field.

REFERENCES

[1] F. Bellifemine, G. Caire, D. Greenwood, “Developing Multi-agent

Systems with JADE”, Wiley, 2007.

[2] M. Berger, S. Rusitschka, D. Toropov, M. Watzke, M. Schlichte,

“Porting Distributed Agent-Middleware to Small Mobile Devices”, In

Proceedings of the Workshop on Ubiquitous Agents on embedded,

wearable, and mobile devices, Bologna, 2002.

[3] S. Landau, M. Leese, “Cluster Analysis”, Oxford University Press US,

2001.

[4] A. Tanenbaum, “Computer Networks”, Prentice Hall, 2002.

[5] D. Salomon, “Data Privacy and Security: Encryption and Information

Hiding”, Springer-Verlag, New York 2003.

[6] F. Dubois, B Mérialdo, “A framework for multi-agent multimedia

indexing”, In Proceedings of workshop on intelligent multimedia

information indexing, August 1995 - Montreal, Canada.

[7] C. N. Linn, “A multi-agent system for cooperative document indexing

and queryingin distributed networked environments”, In Proceedings of

International Workshops on Parallel Processing, 1999.

[8] J. Chen, S. Wolfe, S. Wragg, “A distributed multi-agent system for

collaborative information management and sharing”, In Proceedings of

the ninth international conference on Information and knowledge

management, McLean, Virginia, United States, 2000.

[9] K. Hammouda and M. Kamel, “Collaborative Document Clustering”, In

Proceedings of Conference on Data Mining (SDM06), pp. 453-463,

Bethesda, Maryland, April 2006.

[10] C. J. van Rijsbergen, “Information Retrieval” Butterworth Ltd., second

edition, London, 1979.

[11] L. Kaufman, P. J. Rousseeuw, “Finding Groups in Data: An

Introduction to Cluster Analysis”, New York: John Wiley & Sons, 1990.

[12] K. Wang., C. Xu, B. Liu, Clustering transactions using large items. In

Proceedings of International Conference on Information and

Knowledge Management, CIKM’99, Kansas City, Missouri, United

States, 483–490, 1990.

[13] J. Gennari, M. A. Musen, R. W. Fergerson, W. E. Grosso, M. Crubezy,

H. Eriksson, N. F. Noy, S. W. Tu, “The Evolution of Protégé: An

Environment for Knowledge-Based Systems Development”, 2002.

[14] D. L. McGuinness and F. van Harmelen, “OWL Web Ontology

Language Overview”, Feb. 2004, [Online document], Available at

HTTP: http://www.w3.org/TR/owl-features/

[15] S. Schockaert, M. de Cock, C. Cornelis, E. E. Kerre, “Efficient

Clustering with Fuzzy Ants”, In Proceedings of Ant Colony

Optimization and Swarm Intelligence (ANTS 2004), pages 342-349,

2004.

[16] S. Osinski, D. Weiss, “A Concept-Driven Algorithm for Clustering

Search Results”, IEEE Intelligent Systems, 3 (vol. 20), 2005, pp. 48-54.

[17] C.L.Ngo, H.D.Nguyen, A Tolerance Rough Set Approach to Clustering

Web Search Results, in Proceedings of the 8th European Conference on

Principles and Practice of Knowledge Discovery in Databases (PKDD

2004), Italy, September 2004.

[18] J. Stefanowski, D. Weiss, “Carrot and Language Properties in Web

Search Results Clustering”, In Proceedings of the First International

Atlantic Web Intelligence Conference, Madrid, Spain, 2003, pp. 240-

249.

