
The PRACTIONIST Development Tool
Fabio Centineo∗, Angelo Marguglio∗ Vito Morreale∗ Michele Puccio∗,

∗R&D Laboratory - ENGINEERING Ingegneria Informatica S.p.A.

I. THE PRACTIONISTSUITE

PRACTIONIST (PRACTIcal reasONIng sySTem) [1] is a
suite of tools including (see figure 1):(i) a methodology,
consisting of a UML-based modelling language (PAML) and
an iterative and incremental development process,(ii) the
PRACTIONIST runtime and framework (PRF), which defines
and supports the execution logic and provides the built-
in components according to such a logic to support the
development of BDI agents in Java (using JADE1) with a
Prolog belief base, and(iii) the PRACTIONIST Develop-
ment Tool (PDT), a design and development environment
which supports the methodology. The PRF also includes the
PAIT, to monitor the intentional components of each agent
and the PRACTIONIST Autonomic Manager (PAM) which
enables PRACTIONIST applications to support the self-chop
features2 (self-configuring, self-healing, self-optimizing and
self-protecting)

In this abstract we give an overview of the PDT, the
modelling environment that is a part of the PRACTIONIST
suite (figure 1), the metamodel it is built on, and a brief
introduction of the PDT visual editors.

II. T HE PRACTIONIST DEVELOPMENT TOOL

The PRACTIONIST suite provides developers with the
PRACTIONIST Development Tool, a tool to design and
develop multi-agent systems according to the PRACTIONIST
design methodology. Indeed, it supports such a methodology
from the requirements analysis to the code generation of agents
and artefacts (according to the A2A approach [2]), including a
set of visual editors for each phase of the methodology. As an
example, in figure 2 a snapshot of the Class editor is shown.

Some editors of the PDT are based on UML 2.0 meta-
model3, such as the class and use case editors, whereas
the others are based on the PRACTIONIST Agent Modeling
Language (PAML), which is a semi-formal UML-based visual
modeling language for specifying, representing and document-
ing multi-agent systems designed with PRACTIONIST.

As the PAML aims to the definition of PRACTIONIST
agents, its metamodel contains metaclasses to model inten-
tional components of such agents, such as beliefs, goals and
relations among them, plans and so forth.

The PDT has been developed by using several Eclipse4

plug-ins, such as: UML2, Eclipse Modelling Framework

1http://jade.tilab.com
2http://www-03.ibm.com/autonomic/library.html
3UML 2.0 Superstructure Specification: formal/05-07-04
4http://www.eclipse.org/

Development Process

UML i* notation

PAML

PRACTIONIST Methodology

Eclipse

PRACTIONIST Development Tool (PDT)

PRACTIONIST
Code Generator

PRACTIONIST Packages

Java
Prolog

(SWI, TuProlog)

PRACTIONIST Runtime & Framework

PAIT PAM

PRACTIONIST Modelling
Editors

Fig. 1. The PRACTIONIST suite.

(EMF), Graphical Editing Framework (GEF), Graphical Mod-
eling Framework (GMF) and other Eclipse extensibility fea-
tures. All the PDT editors share a common infrastructure, so
that new editors can be added in it without any impact on the
existing ones. Moreover, each editor inherits several features
described below by the above infrastructure.

As many well-known CASE tools, the PDT editors provide
all the features that support the development of complete and
consistent visual models. Some of them are provided by GMF,
such as thecut and copyandsave diagram as imagesupports,
the look and feelmanagement, the diagram validation and so
on, whereas the other ones have been built by generalizing
some of the GMF project features, such as:

• Unified model: all diagrams created inside a PRACTION-
IST project share the same model (i.e. an instance of the
meta-model), whereas each generic GMF diagram file has
usually its own model file. Sharing the same model file
means sharing the same command stack, allowing us to
execute cross-checks among elements and consequently
model more complex and greater systems as a whole;

• Drag and Dropsupport: a PRACTIONIST project has its
own model view, where the developed model is displayed
as a tree. From this view it is possible todrag and
drop the elements into diagrams, enabling us to use the
same elements in different diagrams as well. Thus, if an
element is modified in a diagram, it will be updated in
all the other diagrams.



Fig. 2. A snapshot of the PRACTIONIST Development Tool.

• Delete from diagramand delete from modelactions: in
a GMF diagram thedelete from modelaction is enabled
by default, so when an element is deleted in the diagram
it is also automatically deleted from the model. Such a
behaviour was modified in order to get thedelete from
view action as well, and thus have a more flexible model
management.

For the development of the PDT, the support provided
by the Eclipse environment has been fully exploited. As a
consequence:

• a PRACTIONIST project, which is a custom Eclipse Java
project, provides several sections where developers can
create their own diagrams and the source folder that will
contain the generated source code;

• the model view of a PRACTIONIST project is a custom
Eclipse view that displays the unified model underlying
the project;

• the PRACTIONIST Java code can be generated starting
from diagrams in a simple way.

As mentioned, the PDT provides PRACTIONIST develop-
ers with a rich set of visual modelling editors, as follows:

• i*-based [3] editors:
– Strategic Dependency (SD) editor: to describe the

dependency relationships among various actors in an
organizational context;

– Strategic Rational (SR) editor: to describe stake-
holder interests and concerns and how they might
be addressed by various configurations of systems
and environments;

• UML2.0 based editors:
– Use Case editor: to model use cases and system

funcionalities from the actor’s point of view;
– Class editor: to model the structure of a system or

of its parts for instance (see figure 2);

Fig. 3. A snapshot of the PDT Plan Body editor.

• PRACTIONIST agent editors:

– Agent editor: to model agents and specify their
components;

– Domain editor: to model facts about the world the
agent believes true, false or has no belief about;

– Goal editor: to model agent goals and the relation-
ships among them;

– Effector/Action - Perceptor/Perception editor: to
model the means agents interact with their environ-
ment;

– Plan editor: to model the internals PRACTIONIST
plans;

– Plan Body editor: to model the body of PRACTION-
IST plans (see figure 3).

Finally, the PDT represents a powerful visual modeling
environment that supports the representation of the concepts
underlying the BDI model as well as several features present
in well-known UML-based CASE tools. Moreover, it let us
reduce the development time of PRACTIONIST applications
thanks to the code generation of agents and artefacts. The
PDT aims at bridging the gap between the increasing need
of development of multi-agent systems and the availabilityof
tools for their design.

REFERENCES

[1] V. Morreale, S. Bonura, G. Francaviglia, F. Centineo, M.Puccio, and
M. Cossentino, “Developing intentional systems with the practionist
framework,” in Proceedings of the 5th IEEE International Conference
on Industrial Informatics (INDIN07), July 2007.

[2] A. Ricci, M. Viroli, and A. Omicini, “Programming MAS with artifacts.”
in PROMAS, 2005, pp. 206–221.

[3] E. S. K. Yu, “Towards modelling and reasoning support for early-
phase requirements engineering,” pp. 226–235. [Online]. Available:
citeseer.ist.psu.edu/article/yu97towards.html


