The PRACTIONIST Development Tool

Fabio Centinety Angelo Marguglié Vito Morreale’ Michele Puccié,

*R&D Laboratory - ENGINEERING Ingegneria Informatica S.p.A

I. THEPRACTIONISTSUITE

PRACTIONIST (PRACTIcal reasONIng sySTem) [1] is a
suite of tools including (see figure 1}Ji) a methodology,
consisting of a UML-based modelling language (PAML) ang
an iterative and incremental development proc€gy, the
PRACTIONIST runtime and framework (PRF), which defineg

PRACTIONIST Development Tool (PDT)

PRACTIONIST
Code Generator

I
[
I
PRACTIONIST Modelling
Editors

Eclipse

and supports the execution logic and provides the buil

in components according to such a logic to support th
development of BDI agents in Java (using JADEvith a

Prolog belief base, andii) the PRACTIONIST Develop-

ment Tool (PDT), a design and development environmer
which supports the methodology. The PRF also includes tH
PAIT, to monitor the intentional components of each ager|
and the PRACTIONIST Autonomic Manager (PAM) which
enables PRACTIONIST applications to support the self-cho

PRACTIONIST Methodology PRACTIONIST Runtime & Framework

PAIT PAM

Development Process

PAML PRACTIONIST Packages
UML |* notation | Java Prolog
i ! {{ (SWI, TuProlog)

features? (self-configuring, self-healing, self-optimizing and
self-protecting)

In this abstract we give an overview of the PDT, the
modelling environment that is a part of the PRACTIONIST

Fig. 1. The PRACTIONIST suite.

suite (figure 1), the metamodel it is built on, and a brie(fEMF), Graphical Editing Framework (GEF), Graphical Mod-

introduction of the PDT visual editors.

II. THEPRACTIONIST DEVELOPMENTTOOL

The PRACTIONIST suite provides developers with th
PRACTIONIST Development Tool, a tool to design an
develop multi-agent systems according to the PRACTIONI

design methodology. Indeed, it supports such a methodologﬁpt‘

from the requirements analysis to the code generation oftage®
and artefacts (according to the A2A approach [2]), inclg

eling Framework (GMF) and other Eclipse extensibility fea-
tures. All the PDT editors share a common infrastructure, so
éhat new editors can be added in it without any impact on the
(?xisting ones. Moreover, each editor inherits severalufesat
Sqescribed below by the above infrastructure.

s many well-known CASE tools, the PDT editors provide
he features that support the development of complete an

din consistent visual models. Some of them are provided by GMF,

set of visual editors for each phase of the methodology. As S¥ch as theut and copyandsave diagram as imaggupports,

example, in figure 2 a snapshot of the Class editor is sho

wije look and feelmanagement, the diagram validation and so

Some editors of the PDT are based on UML 2.0 metQn, whereas the other ones have been built by generalizing
modeP, such as the class and use case editors, wheré3§'e of the GMF project features, such as:

the others are based on the PRACTIONIST Agent Modeling
Language (PAML), which is a semi-formal UML-based visual
modeling language for specifying, representing and doaiime
ing multi-agent systems designed with PRACTIONIST.

As the PAML aims to the definition of PRACTIONIST

agents, its metamodel contains metaclasses to model inten-
tional components of such agents, such as beliefs, goals and

relations among them, plans and so forth.
The PDT has been developed by using several Edlipse
plug-ins, such as: UML2, Eclipse Modelling Framework

Ihttp://jade.tilab.com
2http://www-03.iom.com/autonomic/library.html

SUML 2.0 Superstructure Specification: formal/05-07-04
4http://www.eclipse.org/

« Unified modelall diagrams created inside a PRACTION-

IST project share the same model (i.e. an instance of the
meta-model), whereas each generic GMF diagram file has
usually its own model file. Sharing the same model file
means sharing the same command stack, allowing us to
execute cross-checks among elements and consequently
model more complex and greater systems as a whole;

« Drag and Dropsupport: a PRACTIONIST project has its

own model view, where the developed model is displayed
as a tree. From this view it is possible ttrag and
drop the elements into diagrams, enabling us to use the
same elements in different diagrams as well. Thus, if an
element is modified in a diagram, it will be updated in
all the other diagrams.

S Java - classExample. beld - Eclipse SDK

Fie Edt Navgate Seach Promct Diegam Run Sample Window Help

8 Package Explorer £1 - Hirarchy

A vadshien 52 B 3% 3 7 O|[Problems | Javado | Dedaration |] progertis 51 O

€ clasExample.beld
&) Ubmodelund

&) Unogel
(= Ealyview

® (> UseCaseliow

$-0-QU BEG- B - <hd (& e

— Bivoge o e =R

|

= 5[4 dassexanple.bdd £3 =0

aoraitice ¥
 stemer zoon

Clorder | #eustomer order | ustomer

ELrumber : String € adless : String
close() ELname : String
dispatch)

[Comnections +
/ Resaciation

& comorate_Custarmer

7 Dependency
5 Associaton Class

= Personal_Customer

. credtCard i long

53 contactiName :String
[EL creditLimit : double.
[EL creditRating : String
& biForonth()

@ remnd()

5|

Appearance.
Bl] Property value
Advenced = PO
Name i defautPackage
Visbity Publc
® view

Fig. 2. A snapshot of the PRACTIONIST Development Tool.

Delete from diagramand delete from modeéctions: in
a GMF diagram thelelete from modehction is enabled

by default, so when an element is deleted in the diagram
it is also automatically deleted from the model. Such a

behaviour was modified in order to get tdelete from

view action as well, and thus have a more flexible model

management.

For the development of the PDT, the support provided
by the Eclipse environment has been fully exploited. As a

consequence:

o a PRACTIONIST project, which is a custom Eclipse Java
project, provides several sections where developers can
create their own diagrams and the source folder that will

contain the generated source code;

£ AchieveTlePlan bodyDisgram 1 ==l

Problems | Javadoc | Declaration | Properties | # Modelviow &3

Palette - |
[Select
| zom

- wlesives | Eitiote

W)Hold_a_Tile

| Elements »
(Goal:FindTile) o

| Plan start
| ®3Plan End
Plan Fallre
<«adlch> ®
ssert_Positin
(Fact:TiePostian)

4 Dedsion
[5end Message

(Fact:TiePostion)

@ |39 Exchanged Object
) wsends B wait for Goal

[® send_Failire_Message e

= Connetions |
| /" Control Flow
| o Object Flow

Practionist Plan AchieveTilePlan [a]
/" <Control Flows>

/" <Centrol Flow>

/" <Centrel Flows>

/7 <Centrol Flow> ‘
/" <Centrol Flow> |
/" <Centrel Flow>

/7 Contral Flow> |
@ <Intial Node> Tnitiahiode |
Add Belief Action Assert_Postion

B call agent Action Picklp_Tie I
) Desire Action Hold_a_Tie

&) practionist Plan End Node

@ practionist Plan Failure Node

Remove Belief Action Remove_Position]

Fig. 3. A snapshot of the PDT Plan Body editor.

o PRACTIONIST agent editars

— Agent editor to model agents and specify their

components;
Domain editor to model facts about the world the
agent believes true, false or has no belief about;

— Goal editor to model agent goals and the relation-

ships among them;

Effector/Action - Perceptor/Perception editotto
model the means agents interact with their environ-
ment;

Plan editor. to model the internals PRACTIONIST
plans;

Plan Body editorto model the body of PRACTION-
IST plans (see figure 3).

the model view of a PRACTIONIST project is a custom Finally, the PDT represents a powerful visual modeling
Eclipse view that displays the unified model underlyingnvironment that supports the representation of the casicep

the project;

underlying the BDI model as well as several features present

the PRACTIONIST Java code can be generated startiftg well-known UML-based CASE tools. Moreover, it let us

from diagrams in a simple way.

ers with a rich set of visual modelling editors, as follows:
o i*-based [3] editors

reduce the development time of PRACTIONIST applications
As mentioned, the PDT provides PRACTIONIST develophanks to the code generation of agents and artefacts. The
PDT aims at bridging the gap between the increasing need
of development of multi-agent systems and the availabdfty

_ Strategic Dependency (SD) editao describe the t00IS for their design.

dependency relationships among various actors in an

organizational context;
— Strategic Rational (SR) editorto describe stake-

REFERENCES

[1] V. Morreale, S. Bonura, G. Francaviglia, F. Centineo, Ruccio, and
M. Cossentino, “Developing intentional systems with the cicaist

holder interests and concerns and how they might framework,” in Proceedings of the 5th IEEE International Conference

be addressed by various configurations of syste
and environments;

o UML2.0 based editors
— Use Case editorto model use cases and system

funcionalities from the actor’s point of view;

— Class editor to model the structure of a system or

of its parts for instance (see figure 2);

on Industrial Informatics (INDINO7)July 2007.

A. Ricci, M. Viroli, and A. Omicini, “Programming MAS with difacts.”
in PROMAS 2005, pp. 206-221.

[3] E. S. K. Yu, “Towards modelling and reasoning support farlg
phase requirements engineering,” pp. 226-235. [Onlinejailable:
citeseer.ist.psu.edu/article/yu97towards.html

