

Abstract— This paper briefly describes the ELDATool, a

Statecharts-based visual tool for the rapid prototyping of Multi-
Agent Systems based on the Event-driven Lightweight Distilled
Statecharts-based Agents (ELDA) model. In particular, the
ELDATool, which is implemented in Java as an Eclipse plug-in,
supports an iterative process involving the following phases:
detailed design, automatic code generation and simulation. The
high-level design, which is the input to this iterative process, can
be obtained through currently available agent-oriented
methodologies such as PASSI and GAIA. In order to show the
main characteristics of the ELDATool, a simple case study is
presented.

Index Terms—Visual Tools, Multi-Agent Systems, Distilled
StateCharts, State-based Programming.

I. INTRODUCTION
gent oriented software engineering [1] aims at providing
methodologies and tools for the development of complex

and distributed software systems through the agent paradigm
in terms of Multi-Agent Systems (MASs).

Several agent-oriented methodologies (PASSI [2], GAIA
[3], SODA [4], INGENIAS [5], DSC-based [6, 7], etc.) have
been to date proposed for supporting the development life-
cycle of MASs. Few of them are also equipped with visual
tools capable of supporting all the phases of the development
life-cycle. The availability of such tools is widely considered
to be strategic for supporting a rapid prototyping of the MAS
under-development.

This paper introduces the ELDATool which aims at
supporting the DSC-based agent-oriented methodology
proposed in [6, 7, 8]. This methodology covers the modelling,
implementation and simulation phases of MAS based on the
ELDA (Event-driven Lightweight Distilled Statecharts-based

G. Fortino is with the Department of Electronics, Informatics and Systems

(DEIS), University of Calabria, Rende (CS), 87036 Italy. (corresponding
author; phone: +39.0984.494063; fax: +39.0984.494713; e-mail:
g.fortino@unical.it).

A. Garro is with the Department of Electronics, Informatics and Systems
(DEIS), University of Calabria, Rende (CS), 87036 Italy. (e-mail: garro
@unical.it).

S. Mascillaro is with the Department of Electronics, Informatics and
Systems (DEIS), University of Calabria, Rende (CS), 87036 Italy. (e-mail:
samuele.mascillaro@deis.unical.it).

W. Russo is with the Department of Electronics, Informatics and Systems
(DEIS), University of Calabria, Rende (CS), 87036 Italy. (e-mail: w.russo
@unical.it).

Agents) model.
According to the ELDA model [6, 9] a multi-agent system

is modelled at high-level as a set of different types of agents
and a set of interaction events among the agents. An ELDA
agent consists of a unique identifier, a data space, a dynamic
behaviour, a single thread of control, and a queue of the
received events. In particular, the dynamic behaviour of an
agent is specified through the Distilled Statecharts formalism
[6], derived from the well-known Statecharts [10]. Modelling
an agent is basically carried out by specifying its behaviour as
a hierarchical state machine compliant with the state-based
template of the FIPA agent [11] and by defining the events
which can be received and generated. While events are
implicitly received through the event queue, they are explicitly
emitted through the generate primitive. The received events
are called IN-events, whereas the generated events are called
OUT-events. In particular, events formalize three kinds of
interactions [9]: (i) internal, which are sent by the agent to
itself to proactively drive its activity; (ii) management, which
are used to interact with the agent management system for
requesting services and resources; (iii) coordination, which are
exploited to interact with local or remote agents/entities
through a given coordination space.

The ELDA model is implemented in the ELDA framework,
an object-oriented framework which provides the
programming abstractions to implement ELDA-based MAS.
Currently, the ELDA framework is implemented in Java.

The ELDATool incorporates the ELDA framework and
provides a graphical integrated development environment
based on Eclipse [12]. The ELDATool is exemplified through
a simple case study concerning with the modelling of a
contractor mobile agent within an agent-based e-Marketplace.

The rest of this paper is organized as follows. Section 2
enumerates the system requirements of the ELDATool.
Section 3 and section 4 respectively present the ELDATool
design and implementation. Section 5 describes the use of the
ELDATool through the simple case study developed. Finally
conclusions are drawn and on-going work anticipated.

II. SYSTEM REQUIREMENTS
ELDATool aims at supporting the MAS designer for the

rapid prototyping of MASs based on the ELDA model
according to the iterative process shown in Figure 1.

ELDATool: A Statecharts-based Tool for
Prototyping Multi-Agent Systems

Giancarlo Fortino, Alfredo Garro, Samuele Mascillaro and Wilma Russo

A

Figure1: Iterative process for prototyping ELDA-based MASs.

To support the Modelling phase, the tool offers the basic

functionality of visual modelling of the active state of the
agent behaviour through a DSC-based Hierarchical State
Machine. The active state is a composite state in which the
agent performs its main activity. In particular, the following
modelling features are supported:
- definition of the internal states of the active state;
- definition of the events, generated (or OUT-events) and

received (IN-events) by/from the ELDA agent, by
extending appositely the base events provided by the Java
implementation of the ELDA framework (or
ELDAFramework) or events previously defined by the
user;

- definition of the transitions between states which involves:
− the use of the IN-events previously defined for

labelling the transitions;
− (possibly) the definition and the use of the guards

associated to the transitions;
− (possibly) the definition and the use of the actions

associated to the transitions.
The obtained graphical modelling is serialized into XML-

like files.
To support the Coding phase, the tool offers the

functionality of automatic code generation by translating the
XML-like files produced after the Modelling phase into Java
code based on the ELDAFramework.

Finally, to support the Simulation phase, the tool is based
on the MASSIMO framework [13] and offers the following
functionalities:
- implementation of the simulator through the definition of

the network topology of the agent platform, the initial
location of the agents, the definition of the performance
parameters, etc;

- execution of the simulator for performing the simulation;
- gathering of the values of the parameters defined for the

performance measurements.
The ELDATool is implemented in Java as an Eclipse plug-

in to exploit several frameworks which fully support the
development of visual editors. Moreover, the high diffusion of
Eclipse in the research community makes the tool immediately
available to the Eclipse users and the learning process of the
tool is so quicker.

III. DESIGN
The architecture of the ELDATool is component-based;

each component is responsible of the specific aspects of the
Modelling, Coding and Simulation phases.

In particular, for each different modelling aspect the
following editors have been identified and designed:
- DSCEditor, for modelling the active state of an ELDA

agent;

- EventEditor, for defining the events;
- GuardEditor, for defining the guards;
- ActionEditor, for defining the actions;
- FunctionEditor, for defining the supporting functions.

Each editor is capable of handling (visually or not) the
elements of its reference meta-model and producing an
instance of this meta-model (or specific model) as output.

The CodeGenerator component uses the models produced
by the editors as input to offer the functionalities needed for
the code generation according to the classes constituting the
ELDAFramework.

The Simulator component uses the code produced by the
CodeGenerator component to support the Simulation phase.

Figure 2 shows the components, the dependence
relationships among them, and their contextualization with
respect to the process phases.

Figura 2: The ELDATool components

IV. ELDATOOL IMPLEMENTATION
Currently the ELDATool supports the first two phases of

the process: Modelling and Coding. The architectural
components described in section II are implemented in Java
by exploiting:
- the Eclipse platform [12], which is a widely-used Integrated

Development Environment (IDE) with extensible
architecture based on plug-ins, i.e. independent components
which can be easily installed and integrated in the IDE;

- the Graphical Editing Framework (GEF) [14] which allows
for the development of visual editors in Eclipse by offering
high support for the management of the user interactions;

- the Eclipse Modelling Framework (EMF) [15] which
supports the modelling phase of a structural model and the
automatic generation and manipulation of its Java
implementation.
The editor components (see section II) are implemented

according to the architectural pattern Model-View-Controller
(MVC) to support the user-interaction handling (View-
Controller) and the manipulation of the model in response to
the generated events (Model).

In particular, user-interaction handling is implemented by
extending the classes provided by GEF whereas the model
manipulation is carried out by the plug-ins automatically

DSCEdito

ActionEditoGuardEdito

EventEdito

FunctionEdito

CodeGenerato Simulator

Modelling Coding Simulation

generated by EMF. It is worth noting that EMF generates a
plug-in exposing the interfaces needed for the instantiation of
the implemented meta-model. Accordingly, each editor
component is constituted by an EMF-generated plug-in which
manages the model and a plug-in which handles the user
interaction.

In order to ease the deployment of the ELDATool the
number of its constituting plug-ins was minimized. In
particular, the plug-ins which manage the models are
separately implemented whereas the plug-ins handling the
user-interaction and supporting the code generation are
integrated in a unique plug-in, the ELDAEditor.

As a consequence, the following plug-ins are implemented:
- DSCModel, which contains the implementation of the DSC

meta-model;
- EventModel, which contains the implementation of the

Event meta-model;
- ActionGuardModel, which contains the implementation of

the Action and Guard meta-model;
- FunctionModel, which contains the implementation of the

Supporting Function meta-model;
- ELDAEditor, which contains all the editor and the code

generator.
It is worth noting that the models, obtained through

instantiating the related meta-models and by using the editor
made available by the ELDATool, are serialized into
independent XML-like files with different extensions (see
Table 1).

Table 1: Extensions of the XML-like files associated to the models

Model File Extension
Event event
Action action
Guard guard
Function function
Active State dsc

Figure 3 highlights and clarifies the dependence

relationships among the implemented plug-ins and the
GEF/EMF plug-in.

Figura 3: The ELDATool Plug-ins.

The ELDATool will be released as a set of plug-ins and a
jar named ELDAFramework.jar which contains the Java
implementation of the ELDA framework. It is worth noting
that to install the ELDATool it is only necessary to copy the
set of plug-ins and the ELDAFramework.jar into the plugins

folder of Eclipse and restart Eclipse. The software
requirements of the ELDATool are: Eclipse ver. 3.3, GEF ver.
3.3, EMF ver. 2.3.0 and JRE ver. 1.5.

V. A CASE STUDY
In this section the use of the ELDATool is shown by

illustrating the modelling of an ELDA agent named
Contractor Mobile Agent (CMA) which operates within an
agent-based e-Marketplace. After a discovery phase of the
vendors offering a specific product which was carried out by
another type of agent, the CMA has the goal of supporting the
phase of contracting with the vendors found.

Figure 4 shows the active state of the CMA behaviour and
Figure 5 reports its guards, actions, and supporting functions.

In particular, the CMA, received the identifier and the
location of a given vendor and the product to buy, migrates to
the vendor location (see action ac1) and starts the contracting
phase (see action ac2). After obtaining the offer, if the product
is immediately available (see guard productAvailable) the
CMA archives the offer and comes back to the starting
location (see action ac3); otherwise, the CMA waits for the
product availability until a timeout expiration (see action ac5).
After the timeout expiration, the CMA restarts the contracting
phase if the number of trials is greater 0 (see guard
NotAllTrialsDone); otherwise, the CMA archives the offer
and migrates to the starting location (see action ac3). Finally,
the CMA notifies the details of the contracting phase to its
owner (see action ac4).

Figure 4: The active state of the CMA

Guards Definitions
private boolean productAvailable(ELDAEvent e){
 OfferMsg offer=(OfferMsg) e;
 if (offer.getProductAvalaible())
 return true;
 return false;
}
private boolean productNotAvailable(ELDAEvent e){
 return !productAvailable(e);
}
private boolean NotAllTrialsDone(ELDAEvent e){
 return !AllTrialsDone(e);
}
private boolean AllTrialsDone(ELDAEvent e){
 if(trials==0)
 return true;
 return false;
}
Actions Definitions
private void ac1(ELDAEvent e){
 generate(new ELDAEventMoveRequest(self(), self(),
 VATarget.getCurrLocation()));
 generate(new Contract(self(), self()));
}
private void ac2(ELDAEvent e){
 PriceQueryMsg priceQuery= new PriceQueryMsg(self(), VATarget, null);
 generate(new ELDAEventMSGRequest(self(), VATarget, priceQuery));
}
private void ac3(ELDAEvent e){
 OfferMsg offer=(OfferMsg) e;
 storeVAOffer(offer);
 generate(new ELDAEventMoveRequest(self(), self(),

ELDAEditor <<Eclipse Plug-

DSCModel
<<Eclipse Plug-

EventModel
<<Eclipse Plug-

ActionGuardModel
<<Eclipse Plug-

FunctionModel
<<Eclipse Plug-

GEF <<Eclipse Plug-
EMF

<<Eclipse Plug-

DSCEditor ActionEdito GuardEditor

EventEdito CodeGeneratoFunctionEditor

 owner.getCurrLocation()));
 generate(new ReportParent(self(), self()));
}
private void ac4(ELDAEvent e){
 PPriceMsg pPrice=new PPriceMsg(self(), owner, VAOffer);
 generate(new ELDAEventMSGRequest(self(), owner, pPrice));
 generate(new ELDAEventQuitRequest(self()));
}
private void ac5(ELDAEvent e){
 if(timeout>0){
 timeout--;
 generate(new Tick(self(), self()));
 }
 else{
 timeout=100;
 generate(new Contract(self(), self()));
 }
}
private void ac6(ELDAEvent e){
 trials--;
 ac2(e) ;
}
Functions Definitions
private void storeVAOffer(OfferMsg offer){
 //omissis
}

Figura 5: Guards, actions and functions of the CMA behavior

To exemplify the use of the ELDATool the following
activities are briefly illustrated: (A) visual definition of the
active state, (B) definition of events, (C) definition of guards,
(D) definition of actions, and (E) definition of supporting
functions.

A. Definition of the active state
The result of this activity is the model of the active state of

the agent behaviour; the transitions defined among the states
are based on events, guards, and actions which are previously
defined. Moreover, during this activity, it is possible to define
local variables for each state so constituting a hierarchical data
space. Figure 6 shows a snapshot of the active state of the
CMA behaviour obtained through the DSCEditor.

Figure 6: Definition of states

B. Definition of events
The EventEditor allows for the definition of new events by

extending the events already offered by the ELDAFramework.
In particular, for each event, the event name, the event class of
the ELDAFramework to be extended, and (possibly) new
parameters can be defined. Figure 7 shows the event definition
dialog through which the event Tick is defined as extension of
the base event ELDAEventInternal.

Figure 7: Definition of an event

C. Definition of the guards
The definition of a guard involves the definition of its name

and the boolean expression associated to it (or guard body).
Within a guard body it is possible to use variables belonging
to the data space (e.g. the integer variable trials), guards
previously defined and supporting functions. Figure 8 shows
the definition of the guard named AllTrialsDone to be
associated to the transition between the TimeOut state and the
StoreAndMigrate state.

Figure 8: Definition of a guard

D. Definition of the actions
The definition of an action involves the definition of its

name and the instructions which costitute it. In an action, it is
possibile to use variables belonging to the data space, actions
previously defined, and supporting functions. Figure 9 shows
the definition of the action ac6 which uses the action ac2
previously defined.

Figure 9: Definition of an action

E. Definition of supporting functions
The definition of supporting functions which can be used

by actions and guards to improve design modularity, is
constituted by the specification of the function name, of the
type of the returned value, of the parameters and of the
function body. Figure 10 shows the dialog for the definition of
the supporting functions; in particular, the StoreVAOffer
function is defined which returns void and has only the
parameter offerMsg of the OfferMsg type.

Figure 10: Definition of a supporting function

F. Code generation
After defining the agent behavior, it is possible to generate

Java code through the CodeGenerator component. The code
generation activity creates a new project containing the
translation of specified models into Java code according to the
ELDAFramework.

Figure 11 shows both the project containing the models of
the whole MAS under-development (EMarketPlace) and the
project structure (EMarketPlace_Implementation) generated
only for the CMA which contains a package
(emarketplace.cma) with the CMAActiveState class and a
package (emarketplace.events) with event classes triggering

the CMA (Contract, OfferMsg, ReportParent, Tick).

Figure 11: Structure of the generated project

Figure 12: Active state of the CMA agent

Figure 12 shows the outline of the CMAActiveState which
highlights the hierarchical dataspace of the agent and the
location of guards, actions, and functions.

Figure 13 shows an excerpt of the CMA generated code
related to the Timeout state.

// TIMEOUTState Inner Class
public class TIMEOUTState extends SimpleState implements Serializable
{

 public TIMEOUTState (AState parent, ELDABehavior ebeh) {
 super(parent,ebeh);
 }

 public final int handler(ELDAEvent evt){
 if (evt instanceof Tick){
 ac5(evt);
 return 0;
 }
 else if (evt instanceof Contract && NotAllTrialsDone(evt)){
 ac6(evt);
 ((CompositeState) parent).setActiveState(
 ((CompositeState) parent).getState("QUERY"));
 changeState(((CompositeState) parent).getActiveState());
 return 0;
 }
 else if (evt instanceof Contract && AllTrialsDone(evt)){
 ac3(evt);
 ((CompositeState) parent).setActiveState(
 ((CompositeState) parent).getState("STOREANDMIGRATE"));
 changeState(((CompositeState) parent).getActiveState());
 return 0;
 }
 else return parent.handler(evt);
 }
 // Actions Definitions Section
 private void ac6 (ELDAEvent e){
 trials--;
 ac2(e);
 }
 // Guards Definitions Section
 private boolean NotAllTrialsDone (ELDAEvent e){
 return ! AllTrialsDone(e);
 }
 private boolean AllTrialsDone (ELDAEvent e) {
 if(trials==0)
 return true;
 return false;
 }
}

Figure 13: The code of the Timeout state.

VI. CONCLUSIONS AND FUTURE WORKS
This paper has presented the ELDATool by describing its

system requirements, design, implementation, and use through
a simple example. The ELDATool represents a research effort
aiming at supporting the rapid prototyping of MASs which is
contextualized in the active research area on agent-oriented
software engineering. In particular, the ELDATool gives
support to a DSC-based agent-oriented methodology
seamlessly covering the phases of the MAS development
lifecycle from modeling to implementation.

Visual modeling and programming, and automatic code
generation are very important features that any tool supporting
an agent-oriented methodology should have to ease the
designer tasks. The ELDATool fully provides such features
and, furthermore, being based on the Eclipse platform, can be
easily distributed and used by the community.

Currently, efforts are underway for (i) completing the
Simulation component so allowing validation and

performance evaluation of the MAS under-development; (ii)
designing and implementing new components for the
implementation and deployment of the prototyped MAS for a
target agent platform.

REFERENCES
[1] F. Zambonelli and A. Omicini, “Challenges and research directions in

agent-oriented software engineering”, Autonomous Agents and Multi-
Agent Systems, 9(3), pp. 253-283, Nov. 2004.

[2] M. Cossentino, “From Requirements to Code with the PASSI
Methodology,” In Agent-Oriented Methodologies, Eds. B. Henderson-
Sellers and P. Giorgini, Idea Group Inc., Hershey, PA, USA, 2005, pp.
79–106.

[3] F. Zambonelli, N. Jennings, and M. Wooldridge, "Developing
multiagent systems: The Gaia methodology," ACM Trans. Software Eng.
Meth., vol. 12, no. 3, pp.417-470, 2003.

[4] A. Molesini, A. Omicini, E. Denti, and A. Ricci, “SODA: A Roadmap to
Artefacts,” 6th International Workshop on Engineering Societies in the
Agents World VI, (ESAW 2005), Kusadasi, Aydin, Turkey, October
2005. LNAI 3963, Springer, 2006.

[5] J. Pavón, J. Gómez-Sanz, and R. Fuentes, “The INGENIAS
Methodology and Tools,” In Agent-Oriented Methodologies, Eds. B.
Henderson-Sellers and P. Giorgini, Idea Group Publishing, 2005, pp.
236-276.

[6] G. Fortino, W. Russo, and E. Zimeo, “A Statecharts-based Software
Development Process for Mobile Agents”, In Information and Software
Technology, 46(13), pp.907-921, Elsevier, Amsterdam, The Netherland,
2004.

[7] G. Fortino, A. Garro, and W. Russo, “An Integrated Approach for the
Development and Validation of Multi Agent Systems”, In Computer
Systems Science & Engineering, 20(4), pp. 94-107, CRL Publishing Ltd.,
Leicester (UK), Jul. 2005a.

[8] R. Caico, M. Cossentino, G. Fortino, A. Garro, W. Russo, and F.
Termine, "Simulation-driven Development of Multi-Agent Systems",
Proceedings of the EUROSIS Workshop on Multi-Agent Systems and
Simulation (MAS&S’06), Palermo, Italy, 2006, pp. 17-24.

[9] G. Fortino and W. Russo, "Multi-coordination of Mobile Agents: a
Model and a Component-based Architecture", Proceedings of ACM
Symposium on Applied Computing, Special Track on Coordination
Models, Languages and Applications, Santa Fe, New Mexico, USA,
Mar. 13-17, 2005.

[10] D. Harel and E. Gery, “Executable Object Modelling with Statecharts”,
IEEE Computer, 30(7), pp. 31-42, 1997.

[11] FIPA (Foundation for Intelligent Physical Agents). 2002. FIPA Agent
Management Support for Mobility Specification, Document FIPA
DC00087C (2002/05/10).

[12] Eclipse - an open development platform, documentation and software,
available at the World Wide Web: http://www.eclipse.org.

[13] G. Fortino, A. Garro, and Russo, W. (2005b) ‘A Discrete-Event
Simulation Framework for the Validation of Agent-based and Multi-
Agent Systems’, Proceedings of the Workshop on Objects and Agents
(WOA’05), Camerino, Italy, Nov 14-16.

[14] The Graphical Editing Framework (GEF), documentation and software,
available at the World Wide Web: http://www.eclipse.org/gef/.

[15] Eclipse Modeling Framework Project (EMF), documentation and
software, available at the World Wide Web:
http://www.eclipse.org/modeling/emf/.

