
Adding Roles to Relationship Patterns
Matteo Baldoni

Dipartimento di Informatica
Universit̀a di Torino - Italy.
Email: baldoni@di.unito.it

Guido Boella
Dipartimento di Informatica
Universit̀a di Torino - Italy.

Email: guido@di.unito.it

Leendert van der Torre
University of Luxembourg.

Email: leendert@vandertorre.com

Abstract—In this paper we study how roles can be added to
patterns modelling relationships in Object Oriented program-
ming, and which new relationship patterns can be introduced
using roles. Relationships can be introduced in programming
languages either by reducing them to attributes of the objects
which participate in the relationship, or by modelling the rela-
tionship itself as a class whose instances have the participants of
the relationships among their attributes. However, even if roles
have been recognized as an essential component of relationships,
also in modelling languages like UML, they have not been
introduced in Object Oriented programming when it is necessary
to model relationships. Introducing roles allows to add attributes
and behaviors to the participants in the relationship, rather
than to the relationship itself, and to distinguish natural types
as classes participating in the relationships from the roles the
participants acquire in the relationships. In this paper we show
how the role model proposed in powerJava can be used to endow
relationships with roles, both in the relationship as attribute and
in the relationship object pattern. Finally, since these patterns
have different advantages and limitations, we propose a third
pattern based on roles which benefits from the advantages of the
two previous patterns when modelling relationships.

I. I NTRODUCTION

The need of introducing the notion of relationship as a first
class citizen in Object Oriented (OO) programming, in the
same way as this notion is used in OO modelling, has been
argued by several authors, at least since Rumbaugh [1]. For
example, one would like to be able to model the following
scenario: a student can be related to a university by an en-
rollment relationship, he can attend a course, and give exams.
Moreover, a course can be a basic course in one curriculum
and an advanced one in another. Similarly, other relationships
link professors to students and courses, students to tutors,etc.
Another example is the case of a contract net protocol, where
two objects participate in a negotiation relationship, and inside
this they can perform negotiation moves.

Relationships are also known as collaborations or associa-
tions, like they are called in UML, to distinguish them from
specialized relationships like aggregation, relating an object to
its parts, and inheritance, relating a class to a superclass.

Rumbaugh [1] claims that relationships are complementary
to, and as important as, objects themselves. Thus, they should
not only be present in modelling languages, like ER or UML,
but they also should be available in programming languages,
either as primitives, or, at least, represented by means of
suitable patterns.

Two main alternatives have been proposed by Noble [2] for
modelling relationships by means of patterns:
• The relationship as attribute pattern: the relationship is

modelled by means of an attribute of the objects which
participate in the relationship. For example, theAttend
relationship between aStudent and a Course can
be modelled by means an attributeattended of
the Student and of an attributeattendee of the
Course .

• The relationship object pattern: the relationship is mod-
elled as a third object linked to the participants. A class
Attend must be created and its instances related to
each pair of objects in the relationship. This solution
underlies programming languages introducing primitives
for relationships, e.g., Bierman and Wren [3].

These two solutions have different pros and cons, as No-
ble [2] discusses. But they both fail to capture an important
modelling and practical issue. If we consider the kind of
examples used in the works about the modelling of rela-
tionships, we notice that relationships are also essentially
associated with another concept: students are related to tutors
or professors [3], [4], basic courses and advanced courses [4],
customers buy from sellers [5], employees are employed by
employers, underwriters interact with reinsurers [2],etc.From
the knowledge representation point of view, as noticed by
ontologists like Guarino and Welty [6], these concepts are not
natural kinds like person or organization. Rather, they all are
roles involved in a relationship.

Roles have different properties than natural kinds, and, thus,
are difficult to model with classes: roles can be played by
objects of different classes, they are dynamically acquired,
they depend on other entities - the relationship they belong to
and their players. Moreover, when an object of some natural
type plays a certain role in a relationship, it acquires new
properties and behaviors. For example, a student in a course
has a tutor, he can give the exam and get a mark for the exam,
another property which exists only as far as he is a student of
that course.

Thus, roles cannot simply be modelled as subclasses or
superclasses of natural types by means of dynamic reclassi-
fication [7]: a student is not simply a subtype of person nor
viceversa.

As Steimann [7] argues, there is an intrinsic role of roles
as intermediaries between relationships and the objects that
engage in them. Thus, in this paper, we focus on the following



research questions: How to introduce roles in the relationship
as attribute pattern and in the relationship object pattern?
Which other patterns are possible for modelling relationships
when roles are introduced in Object Orientation? As sub-
questions: How to distinguish natural types from roles when
designing a program? Which are the pros and cons of the
two patterns when roles are added? How to overcome the
limitations of the existing patterns?

In this paper we do not propose a new primitive of rela-
tionship in programming languages, but we introduce roles
in patterns for relationships, and as methodology we use our
model of roles in OO programming languages, an extension
which adds roles to the Java programming language, called
powerJava, described in [8], [9], [10], [11], for which a
precompiler has been built.

The language powerJava introduces roles as a way to
structure the interaction of an object with other objects calling
their methods. Roles express the possibilities of interaction
offered by the object to other ones, i.e., the methods they can
call. First, these possibilities change according to the class
of the callers of the methods. Second, a role maintains the
state of the interaction with a certain individual caller. As
roles have a state and a behavior, they share some properties
with classes. However, roles can be dynamically acquired and
released by an object playing them. Moreover, they can be
played by different types of classes. This is why roles in
powerJava can be useful in modelling relationships, where the
behavior of an object changes when it enters a relationship,
until it subsequently abandons it.

In Section II we discuss why and how relationships are
introduced in OO programming. In Section III we discuss
the link between relationships and roles. In Section IV we
summarize our model of roles in powerJava and in Section
V we use it to introduce roles in the relationship as attribute
and relationship object patterns. In Section VI, we describe
a new pattern combining the previous ones. Conclusions end
the paper.

II. I NTRODUCING RELATIONS INOO

To understand the importance of relations in programming
consider the efforts done to model relationships in defining
patterns for them [2], [5], [12] or in extending existing
languages like Java [3].

There is not yet a standard language with the relationship
primitive, notwithstanding some interesting proposals like [3].
Hence, in this paper, to discuss the role of roles in relation-
ships, we will focus on patterns for modelling relationships.
The most important patterns for modelling relationships are
the relationship as attribute pattern and the relationship object
pattern [2]. We will not consider here other solutions like the
collection object, mutual friends and active value patterns.

We will describe these two alternatives with reference to a
university domain. Consider a student who can attend different
kind of courses: basic ones and advanced ones. The same
course can be a basic one in the curriculum of a senior student
and an advanced one for junior student. A student can give the

exam of the basic course he is attending and it is possible to
send a message to the student of the course. Finally, a course is
associated with a tutor if it is taken as a basic course; the tutor,
which is not present in advanced courses, can be different for
every student attending it.

The relationship as attribute pattern is described in Figure
1: the relationship between a student and a basic course he
attends is modelled by means of an attributeattends of the
instances of classStudent which participate in the relation-
ship. The type of the attribute is a set ofBasicCourse . Sym-
metrically, theStudent appears in the attributeattendees
of the classBasicCourse of type set ofStudent . The
BasicCourse is also related with other courses by a rela-
tionship representing the prerequisites.

This solution, however, does not allow to add a state and
behavior to the elements related by the relationship. For
example, it is not possible to specify a different tutor for
eachStudent of theBasicCourse . Moreover, theenrol
method is arbitrarily implemented inBasicCourse rather
than inStudent .

The relationship object pattern is instead described in
Figure 2: the relationshipAttendBasicCourse is mod-
elled by a class whose instances link eachStudent to
the BasicCourse he attends. The second solution solves
some of the issues discussed in this section, in particular, it
facilitates the cohesion of the program, by factoring in the
class AttendBasicCourse all the relevant information.
In particular, the class can contain the properties and the
operations which the participants are endowed with when they
enter the relationship. For example, aStudent can take the
exam of theBasicCourse and get a mark if he is successful.
Note that the mark is a property belonging to the relationship.
Moreover, theStudent can be associated with a tutor in a
BasicCourse .

Also this solution can be modelled in UML, which specifies
information proper of an association via an association class,
where the properties and behaviors of the relationship are
represented. An association class has exactly one instance
for each set of objects linked through the association and a
lifetime delimited by the existence of the association. If a link
is dissolved, the association class instance is destroyed. Due
to the association, certain information exists that is specific to
the association. In UML a dashed line is used to specify an
association class.

But the relationship object solution shares with the rela-
tionship as attribute some limitations. First, we would like
to model the university scenario introducing natural types
like Person and Course rather than theStudent and
BasicCourse classes only. The reason for such modelling
choice is that aPerson is not always aStudent , and he
can play also other roles at the same time as he is aStudent .
Moreover, aPerson is a Student , and, thus, he can give
exams or receive communications concerning the course, only
if he is related by theAttendBasicCourse relationship
with a Course which he follows as aBasicCourse . He
has different marks in different exams, and even different



class Student {
String name;
int number;
HashSet<BasicCourse> attends; }

class BasicCourse {
String code;
String title;
HashSet<Student> attendees;
HashSet<BasicCourse> prerequisites;
void enrol(Student s) {

attendees.add(s);
s.attends.add(this); } }

Fig. 1. The relationship as attribute pattern

class Student {
String name;
int number; }

class BasicCourse {
String code;
String title; }

class AttendBasicCourse {
BasicCourse attended;
Student attendee;
Person tutor;
int mark;
AttendBasicCourse(Student s, Course c) {

attended = c;
attendee = s; }

int giveExam(String work){mark = ...}
void communicate(String text){...} }

Fig. 2. The relationship object pattern

students can have different tutors for the same course. Anal-
ogously aCourse has a tutor only if it plays the role of
BasicCourse .

Second, the relationship as attribute allows to add new
properties and behaviors. However, it does not allow to
satisfy completely the requirement that properties and be-
haviors are associated to the participants: this pattern does
not distinguish which properties belong to theStudent
and which ones to theBasicCourse . This problem
is more evident in the case of behaviors, since all the
methods are invoked on the relationship object of class
AttendBasicCourse rather than on the two related objects
Student andBasicCourse . This is not only a modelling
problem. It is not possible to have a method with the same
name which should be called on either participant,Student
and BasicCourse , with a different meaning. Thus, poly-
morphism is limited, for example, when the method should be
specified as part of an interface implemented by both classes
participanting in the relationship.

As noticed by Steimann [13], some of these problems
cannot be solved by using subclassing: playing a role is not
equivalent to subclassing (aPerson becomes aStudent ),
since a role can be played by instances of different classes.

Consider the case of a role customer which can be played
either by a person or by an organization.

Finally, these patterns do not consider a further dimension:
the complexity of encapsulation when relations are considered.
This problem has been highlighted by Noble and Grundy [5]:
“Extra relationship objects existing ‘outside’ their participating
objects may also be seen as breaking the participating object’s
encapsulation [1]. The first point to note here is that many
relationships occur between objects which are themselves
parts of another aggregate object: that is, the relationship and
the participating objects may all be encapsulated by another
object. The second point here is that if encapsulation is
broken by the relationship, this is because the encapsulated
objects need to be accessed by the relationship object in order
to implement the semantics of the relationship. Without the
explicit relationship object, the analysis relationship would
have to be implemented in another way, by being built in to the
participating objects. If the relationship requires access to the
‘inside’ of an object breaking its encapsulation, these objects
would therefore need to break each other’s encapsulation
anyway. In short, using an explicit relationship object cannot
worsen breaches of encapsulation. The root of the problem
is not the relationshipobject (i.e., how the relationship is
implemented), but the existence of the relationship as part of
the problem domain.

In some circumstances, relationship objects may actually in-
crease encapsulation, as the implementation of the relationship
itself becomes encapsulated against the participating objects
when it is moved in to a separate relationship object.”

In the next section we will explain how roles and relation-
ships are related and how to overcome these problems.

III. ROLES AND RELATIONSHIPS

Relations are deeply connected with roles. This is accepted
in several areas: from modelling languages like UML and
ER to knowledge representation discussed in ontologies and
multiagent systems.

The link between roles and relationships is explicit in mod-
elling languages like UML in the context of collaborations: a
classifier role is a classifier like a class or interface, but “since
the only requirement on conforming instances is that they must
offer operations according to the classifier role, [...] they may
be instances of any classifier meeting this requirement” [14].
In other words: a classifier role allows any object to fill its
place in a collaboration no matter what class it is an instance
of, if only this object conforms to what is required by the
role. Classification by a classifier role is multiple since it does
not depend on the (static) class of the instance classified, and
dynamic (or transient) in the sense above: it takes place only
when an instance assumes a role in a collaboration [15].

As noticed by Steimann [13], roles in UML are quite similar
to the concept of interface, so that he proposes to unify the
two concepts. Instead, there is more in roles than in interfaces.
Steimann himself is aware of this fact: “another problem is
that defining roles as interfaces does not cover everything one
might expect from the role concept. For instance, in certain



situations it might be desirable that an object has a separate
state for each role it plays, even for different occurrences in
the same role. A person has a different salary and office phone
number per job, but implementing the Employee interface
only entails the existence of one state upon which behaviour
depends. In these cases, modelling roles as adjunct instances
would seem more appropriate.”

To do this, Steimann [7] proposes to model roles as clas-
sifiers related to relationships, but such that these classifiers
are not allowed to have instances. In Java terminology, roles
should be modelled as abstract classes, where some behavior
is specified, but not all the behavior, since some methods are
left to be implemented in the class extending them. These
abstract classes representing roles should be then extended by
other classes. However, given that in Java multiple inheritance
is not allowed, this solution is not viable, and roles can be
identified to interfaces only.

Roles as defined in programming languages [11], [16],
[17], instead, are different from interfaces, even if they share
some properties with interfaces, like the fact of being partial
specifications of behavior, thus allowing objects of different
classes entering the same role in a relationship. In particular,
roles have a state, add new operations to their players, and
depend on a context [11], [17].

Also Whitehurst [18] argues that behavior depends on roles:
“the behavior of an object can change depending on the role it
plays. When an association is formed between two instances,
the behavior of the associated instances is altered in some
way. A real world example is a person who becomes a parent.
The person has a parental association with a young person (a
child) and the behavior of the person is changed due to this
association”.

Pearce and Noble [12] notice that relationships have sim-
ilarities with roles. Objects in relationships have different
properties and behavior: “behavioural aspects have not been
considered. That is, the possibility that objects may behave
differently when participating in a relationship from when
they are not. Consider again the student-course example [...].
In practice, a course will have many more attributes, such
as a curriculum, than we have shown. Such attributes will
change over time in line with changes to the course. A useful
constraint would be to prevent any changes when students
are attending the course it would be unfair if the curriculum
changed just before the exam! Thus, Course objects behave
differently (i.e., they don’t accept changes) when they are
participating in a relationship from when they are not (i.e.,
they do accept changes).”

Thus, roles and relationships are strictly related.
In UML, it is possible to specify information and behavior

specific to an association via an association class, but not with
roles, which are partial description of behavior which do not
add anything to their players.

In conclusion, it seems that besides the relationship objects
it is necessary to introduce further objects representing the
roles as adjunct instances of new classes.

IV. ROLES IN POWERJAVA

Baldoni et al. [8], [9], [10], [11] introduce roles as af-
fordances in powerJava, an extension of the object oriented
programming language Java. powerJava is translated into Java
by means of a precompiler, whose details are described in [11].

We only summarize here the powerJava language.
Java is extended with:

1) A construct defining the role with its name, the require-
ments and the signatures of the methods offered to the
objects by playing the role, called powers.

2) The implementation of a role as a class, inside an object,
and according to the definition of its powers.

3) A construct for playing a role and invoking the opera-
tions offered to the role.

We illustrate powerJava by means of an example. Let us
suppose to have a printer which supplies two different ways of
accessing it: one as a normal user, and the other as a superuser.
Normal users have the power to print their jobs and the number
of printable pages is limited to a given maximum. Superusers
have the power to print any number of pages and can query
for the total number of prints done so far. To be a user one
must have an account, which is printed on the pages. The role
specifications are the following:

role User playedby Accounted {
int print(Job job);
int getPrintedPages(); }

role SuperUser playedby Accounted {
int print(Job job);
int getTotalPages(); }

Requirements must be implemented by the objects which
act as players.

interface Accounted
{ Login getLogin(); }

class Person implements Accounted {
Login login; // ...
Login getLogin() {return login;} }

Instead, roles are implemented in the class which offers the
role. To implement roles inside it we revise the notion of Java
inner class, by introducing the new keyworddefinerole
instead ofclass followed by the name of the role definition
that the class is implementing (see the classPrinter in
Figure 3).

As a Java inner class, the methods of a role implementation,
called powers, have access to the private fields and methods
of the outer class (in the above example the private method
print of Printer used both in roleUser and in role
SuperUser ) and of the other roles defined in the outer class.
This possibility does not disrupt the encapsulation principle
since all roles of a class are defined by the same programmer
who defines the class itself. In other words, an object that has
assumed a given role, by means of the role’s methods, has
access and can change the state of the object the role belongs
to and of the sibling roles.



All the constructors of roles have an implicit first parameter
to which it must be passed as value the player of the role: to
construct a role we need both the object the role belongs to
(the object the constructnew is invoked on) and the player of
the role (the first implicit parameter). This parameter has as
its type the requirements of the role and it is assigned to the
keyword that . A role instance is created by means of the
constructnew starting from the object offering the role and
by specifying the name of the inner class implementing the
role which we want to instantiate. This is like it is done in
Java for inner class instance creation. Differently than other
objects, role instances do not exist by themselves and are
always associated to their players and to the object the role
belongs to.

The following instructions create a printer objectlaser1
and two person objects,chris and sergio . chris is a
normal user whilesergio is a superuser. Indeed, instructions
four and five define the roles of these two objects w.r.t. the
created printer.

Printer laser1 = new Printer();

//players are created as Person
Person chris = new Person();
Person sergio = new Person();

//roles are created
laser1.new User(chris);
laser1.new SuperUser(sergio);

An object has different (or additional) properties when it
plays a certain role, and it can perform new activities, the
powers, as specified by the role definition. Moreover, a role
represents a specific state which is different from the player’s
one, which can evolve with time by invoking methods on the
roles. The relationship between the object and the role must
be transparent to the programmer: it is the object which has
to maintain a reference to its roles.

The behavior of a role instance depends on the player
instance of the role, so in the method implementation the
player instance can be retrieved via a new reserved keyword:
that , which is used only in the role implementation. In
Figure 3,that.getLogin() is a parameter of the method
print .

Methods can be invoked from the players, given that the
player is seen in its role. To do this, we introduce the new
construct, calledrole cast. Role casting views an object as
having a different state and different behaviors when playing
different roles. Role casting allows to make transparent to the
programmer the association of a role and an object instance:
the programmer invokes a method of a role on the object
playing it casted into the role; the language transforms this
method invocation in a message sent to the delegated role
instance, which is hidden in its player.

In the example the two users invoke the methodprint on
laser1 . They can do this because they have been empowered
of printing by playing their roles. The act of printing is carried
on by the private methodprint . Nevertheless, the two roles

class Printer {
private int totalPrintedPages = 0;
private void print(Job job, Login login) {

totalPrintedPages += job.getNumberPages();
// performs printing

}

definerole User {
int counter = 0;
public int print(Job job) {

if (counter > MAX_PAGES_USER)
throws new IllegalPrintException();

counter += job.getNumberPages();
Printer.this.print(job, that.getLogin());
return counter;}

public int getPrintedPages()
{ return counter; }

}

definerole SuperUser {
public int print(Job job) {

Printer.this.print(job, that.getLogin());
return Printer.this.totalPrintedPages;}

public int getTotalpages()
{ return Printer.this.totalPrintedPages; }

}
}

Fig. 3. ThePrinter class and its roles

of User andSuperUser offer two different ways to interact
with thePrinter : User counts the printed pages and allows
a user to print a job if the number of pages printed so far is
less than a given maximum;SuperUser does not have such
a limitation. Moreover,SuperUser is empowered also of
viewing the total number of printed pages. Notice that the page
counter is maintained in the role state and persists through
different calls to methods performed by a same sender/player
towards the same receiver as long as it plays the role.

((laser1.User) chris).print(job1);
((laser1.SuperUser) sergio).print(job2);
((laser1.User) chris).print(job3);
System.out.println("The printer printed" +

((laser1.SuperUser) sergio).getTotalPages());

Since an object can play multiple roles, the same method
will have a different behavior depending on the role which the
object is playing when it is invoked. It is sufficient to specify
which is the role of a given object, we are referring to. In the
examplechris can become alsoSuperUser of laser1 ,
besides being a normaluser

laser1.new SuperUser(chris);
((laser1.SuperUser) chris).print(job4);
((laser1.User)chris).print(job5);

In this case two different sessions will be kept: one
for chris as normalUser and the other forchris as
SuperUser . Only when it prints its jobs as a normalUser
the page counter is incremented.



role Student playedby Person {
int giveExam(String work); }

role BasicCourse playedby Course {
void communicate(String text); }

class Person{
String name;
private Queue messages;
private HashSet<BasicCourse> attended;

definerole BasicCourse {
Person tutor;
void communicate (String text){

Person.this.messages.add(text);}
BasicCourse(Person t){

tutor=t;
Person.this.attended.add(this); }

}
}

class Course {
String code;
String title;
private HashTable registry =

new HashTable();
private HashSet<Student> attendees;
private int evaluate(String x){...}

definerole Student {
int number;
int mark;
int giveExam(String work){

mark = Course.this.evaluate(work);
registry.set(that.hashCode(), mark);
return mark;
}

Student (){
Person.this.attended.add(this); }

}
}

Fig. 4. Relationship-role as attribute pattern in powerJava

V. RELATIONSHIPS WITH ROLES USING POWERJAVA

In this section we describe how new patterns for modelling
relationships with roles can be defined, in analogy with both
the relationship as attribute and the relationship object pattern.
We will use the example of Section II to present them.

First of all, using powerJava we can model instances of
natural types likePerson and Course which become,
respectively,Student andBasicCourse when they enter
the relationship. This is possible becauseStudent and
BasicCourse are roles represented in powerJava by in-
stances associated with the players of the roles, which include
the state and behaviors acquired by the players of the roles in
the relationship.

In the relationship-role as attribute pattern, a relation-
ship is not reduced only to two symmetric attributes
basicCourses andattendees . The relationship is mod-
elled also by means of a pair of roles. ThePerson plays
the role of Student with respect to theCourse and

public static void main (String[] args){
Course c = new Course();
Person p = new Person();
//create a role Student for p in c
Student s = c.new Student(p);
BasicCourse b = p.new BasicCourse(c,tutor);
//p as a Student of Course c gives the exam
((c.Student)p).giveExam(work);
//a message text is sent
((p.BasicCourse)c).communicate(text); }

Fig. 5. Using the relationship-role as attribute in powerJava

the Course plays the role ofBasicCourse with respect
to the Person (see Figures 4, 5 and 6 where the UML
representation is illustrated1).

Thus, the attributeattendees of type Student in
Course is not replaced by one of typePerson . Rather,
Student is defined as role andPerson is a class which
can play the role (see the role definition connecting a role to
the classes playing it). The roleStudent is associated with
players of typePerson in the role definition, which specifies
that aStudent can give an exam (giveExam ). Analogously,
the role BasicCourse is associated with players of type
Course in the role definition, which specifies that aCourse
can communicate with the attendee.

The role Student is implemented locally in the class
Course and, viceversa, the roleBasicCourse is defined
locally in the classPerson . Note that this is not contradictory,
since roles describe the way an object offers interaction to
another one: aStudent represents how aPerson can in-
teract with aCourse , and, thus, the role is defined inside the
classCourse . Moreover the behavior associated with the role
Student , i.e., giving exams, modifies the state of the class
including the role (it access theregistry variable) or calls
its private methods (evaluate ), thus violating the standard
encapsulation. Analogously, thecommunicate method of
BasicCourse , modifies the state of thePerson hosting
the role by adding a message to the queue. These methods, in
powerJava terminology, exploit the full potentiality of powers
of violating the standard encapsulation of objects.

To associate aPerson and aCourse in the relationship,
the role instances must be created starting from the objects
offering the role, e.g.:c.new Student(p) (see themain
in Figure 5).

When the player of a role must invoke a power it must be
first role casted to the role. For example, to invoke the method
giveExam of Student , the Person must first become a
Student . To do that, however, also the object offering the
role must be specified, since thePerson can play the role
Student in different instances ofCourse ; in this case the
Course c : ((c.Student)p).giveExam(...) .

The alternative relationship-role object pattern intro-
duces anAttendBasicCourse class modelling the re-
lationship betweenPerson and Course . However, the

1The arrow starting from a crossed circle, in UML, represents the fact that
the source class can be accessed by the arrow target class.



+ communicate(String)

Course

+ name: John

+ tutor: person

+ number: 1234

− ...

− messages: ...
− attended: ...

− evaluate(String)

− attendees: ...
+ title: "programming"

RQ

RQ

+ mark: 10

+ Student(Person)

+ BasicCourse(Course)

+ giveExam(String)Person.this

that

that

:Person.BasicCourse

:Course.Studentp:Person

Course.this

c.Course

+ code: CS110

Person

Fig. 6. The UML representation of the relationship-role as attribute pattern example

AttendBasicCourse class is not linked to aPerson and
a Course . Rather, thePerson plays the roleStudent in
the classAttendBasicCourse and theCourse the role
BasicCourse (see Figures 7 and 8). Like in the previ-
ous solution the roles are modelled as classes implemented,
in this pattern, in the classAttendBasicCourse whose
instances contain the properties and behaviors added when
instances ofPerson andCourse , respectively, participate in
the relationship. Additionally, properties and behaviors which
are associated to the relationship itself, like entering in the
relationship and constraints on the participants can be added
to the relationship class.

To relate aPerson and a Course in a relationship,
an instance ofAttendBasicCourse must be created, to-
gether with an instance ofStudent played by thePerson
and of BasicCourse played by theCourse . To invoke
a power of Student , a Person must be role casted to
the role Student starting from an instance of the class
AttendBasicCourse .

With respect to the previous pattern, it is possible to
notice that the roles can interact with each other: the role
Student invokes in the methodgiveExam the private
methodevaluate of theBasicCourse role. However, the
roles cannot anymore access the private state and methods of
the player of the class. For this reason, it is necessary to add
a public getMessage method in Person , and to define
evaluate in the role rather than in theCourse class.

The two patterns have different pros and cons; the following
list integrates Noble [2]’s discussions on them.

Advantages of the Relationship-role as attribute pattern:
• It allows simple one-to-one relationships: it does not

require a further class and its instance to represent the
relationship between two objects.

• It allows to introduce a state and operations to the objects
entering the relationship, which was not possible without
roles in the relationship as attribute pattern.

• It allows the integration of the role and the element
offering it by means of powers.

• It allows to show which roles can be offered by a class,
and, thus, in which relationships they can participate,
since they are all defined in the class.

Disadvantages of the Relationship-role as attribute pattern:
• It requires that the roles are already implemented offline

inside the classes which participate in the relationship.
• It does not assure coherence of the pair of roles like

student-course, buyer-seller, bidder-proponent, since they

are defined separately in two different classes.
• The role cast to allow a player to invoke a power of its

role requires to know the identity of the other participant
in the relationship.

• It does not allow to distinguish which is the role played
in the other object participating in the relationship (e.g.,
a Student in the attendees set of a Course
can follow the Course as a BasicCourse or an
AdvancedCourse ).

Advantages of the Relationship-role object pattern:

• It allows to introduce a state and operations of the
relationship besides the state and operations added to the
objects entering the relationship.

• It allows to list all instances of the relationship and
centralize operations like entering the relationship and to
check constraints on the relationship.

• It enforces to create both role instances at the same time,
since they are linked to the same relation instance, thus
avoiding the risk of inconsistencies.

• It allows the integration of the role with the relationship
and with the other role, since the powers of a role
can access both. In this way it is possible to deal with
coordination issues [8].

• To make a role cast it is necessary only to know the rela-
tionship instance, thus, the other participant can change
without notice.

• It does not require that the classes of players already
implement the role classes. To play a role it is sufficient
to satisfy the requirements.

Disadvantages of the Relationship-role object pattern:

• It requires a further class and its instance.
• It does not allow the integration of roles with the objects

offering them (e.g.,Student is defined separately of
the classCourse , which, as a consequence, cannot be
accessed). Thus, private variables of classes offering the
role cannot be accessed anymore (seeregistry of
Course in Figure 4), otherwise an object is required
to offer additional public methods to access them (see
getMessage in Figure 7), which endangers encapsula-
tion.

• The roles cannot be tailored anymore with the class
offering the role. E.g., the methodevaluate cannot
be anymore modelled as a private method ofCourse :
different courses cannot evaluate an exam in different
manners.



role Student playedby Person {
int giveExam(String work); }

role BasicCourse playedby Course {
void communicate(String text); }

class AttendBasicCourse{
Student attendee;
BasicCourse attended;
static Hashset<AttendBasicCourse> all;

definerole Student {
int mark;
int number;
int giveExam(String work){

mark = AttendBasicCourse.this.attended.evaluate(work); }
}

definerole BasicCourse {
String program;
Person tutor;
private int evaluate(String work){...}
void communicate(String text){

//invoke the requirement of the Person playing the role
AttendBasicCourse.this.attendee.that.getMessage(text);}

}

AttendBasicCourse(Person p, Course c, String p, Person t){
attendee = this.new Student(p);
attended = this.new BasicCourse(c);
AttendBasicCourse.all.add(this);

}
void communicate(String text){

foreach (AttendBasicCourse x: all)
x.attended.communicate(text);}

}

class Person{
String name;
private Queue messages;
void getMessage(String text) {

messages.add(text) };
}

class Course {
String code;
String title;

}

class University{
public static void main (String[] args){

Person p = new Person();
Course c = new Course();
a = new AttendBasicCourse(p,c,program,tutor);
//p as a Student gives the exam
((a.Student)p).giveExam(work);
//c is used to send a message
((a.BasicCourse)c).communicate(text);}

Fig. 7. Relationship-role object pattern



− attendee: ...

+ mark: 10

+ Student(Person,...)+ getMessage(String)

+ tutor: person

+ giveExam(String)
+ communicate(String)
−evaluate(String)

c.Course

+ code: CS110
+ title: "programming"

 

:AttendBC.BasicCourse

+ BasicCourse(Course,...)

:AttendBC.Student

a:AttendBasicCourse

+ communicate(String)
+ AttendBasicCourse(...)

− attended: ...

that

Person

RQ

that

Course

RQ

AttendBasicCourse.this AttendBasicCourse.this

p:Person

+ name: John
− messages: ...

+ number: 1234

Fig. 8. The UML representation of the relationship-role object pattern example

In summary, we can define an informal program transfor-
mation, which is common to both patterns, to add roles to
relationship patterns using powerJava:

1) Identify the natural types of the objects playing the
roles (e.g.,Person for Student , or Person and
Organization for Customer ).

2) Change the type of the classes which participate in the
relationship from the name of the role to the name of
the natural kind playing the role (now there can be more
than one class playing the role); e.g., the classStudent
becomesPerson .

3) Add a role definition relating the role to the natural types
which can play the roles, or to an interface implemented
by these natural types, and insert in the role defini-
tion the signature of the powers (e.g.,communicate ,
giveExam ).

4) Identify the two links to the participants in the rela-
tions, either in the classes representing the participants
(e.g., attendees of type Student in Course ), or
in the class representing the relationship (for example
attendee of type Student andattended of type
BasicCourse in AttendBasicCourse ).

5) In the same class the link belongs to, add a role class im-
plementing the role definition with the same name as the
type of the link (e.g.,Student in the BasicCourse
class which is now calledCourse , or Student and
BasicCourse in AttendBasicCourse ). Add to
this role class the attributes and the implementation,
according to the role definition, of the powers.

6) In the code which relates the two participant instances
to the relationship, instead of adding the players to
the links, first create two roles instances played by the
respective playes, and, second, add these instances to
the links modelling the relationship (either in the class
of the players, e.g.,Person or in the class modelling
the relationship object, e.g.,AttendBasicCourse ).

7) When a method added by the relationship must be
invoked, first, make a role cast from the object playing
the role to the role it plays.

VI. A NEW RELATIONSHIP PATTERN WITH ROLES

The two relationship patterns added with roles still leave
some unsolved problems. On the one hand, the relationship-
role as attribute pattern allows a strict coupling between the
role and the class offering it. For example, the roleStudent
can access the classCourse when thePerson playing the
role gives an exam: the registry of the courses can be added
with a new entry with the mark of that exam.

On the other hand, the relationship-role object pattern
allows a better coordination of the two roles. All roles of a
relationship share the same namespace, and, thus, can access
each other and the relation too. In this way, it is possible
to define the interaction between the roles separately from
the classes of possible players, and to guarantee that that the
interaction among the players will be performed in the desired
way. In contrast, the roles are separated from the class offering
them in the relationship-role as attribute patterns, and, thus,
roles cannot access the classes offering the roles. They only
share the relationship namespace.

So the two patterns offer a tradeoff between the coupling
of the role together with the class offering it (Student of
a Course , Employee of an Organization , etc.), and
the coordination among the roles. The ideal situation should
allow both aspects to be dealt with. These problems are the
result of the complexities concerning encapsulation arising
when relatioships are taken seriously, as noted by Noble and
Grundy [5] and reported in Section II.

A solution is possible in powerJava by exploiting an often
disregarded feature of Java. The idea is as follows, and it is
illustrated and in Figure 9 as an UML diagram. First, as in the
relationship-role object pattern, a class for creating relationship
objects is created, containing the roles (e.g.,Student and
BasicCourse in AttendBasicCourse ), see Figure 10 .
The interaction between the roles is defined at this level since
the powers of each role can access the state of the other roles
and of the relationship.

Differently from the relationship-role pattern, these roles
must be defined as abstract and so cannot be instantiated.
Moreover, the methods containing the details about how these
methods describing interaction work can be left unfinished and
declared as abstract.

Second, the same roles can be defined according to the
relationship-role as attribute pattern in the classes offering
them (and, thus, they can be developed separately), see Fig-



:AttendBC.Student

that

+ number: 1234
+ mark: 10

+ Student(Person,...)
- evaluate(String)

AttendBasicCourse.this AttendBasicCourse.this

a:AttendBasicCourse

+ communicate(String)
+ AttendBasicCourse(...)

− attended: ...
− attendee: ...

that

RQ

+ number: 1234
+ mark: 10

+ Student(Person,...)

:Course.Student

− evaluate(String)

RQ

Course

PersonCourse.this

Person.this

+ tutor: person

+ communicate(String)

:AttendBC.BasicCourse

+ BasicCourse(Course,...)

+ tutor: person

+ communicate(String)

:Student.BasicCourse

+ BasicCourse(Course,...)c.Course

+ code: CS110
+ title: "programming"

 

p:Person

+ name: John
− messages: ...

 

Fig. 9. The UML representation of the new relationship-role pattern

ure 11. However, these roles, rather than being implemented
from scratch (e.g.,Student and BasicCourse ), they ex-
tend the abstract roles of the relationship object class, filling
the gaps left by abstract methods in the abstract roles. The
extension is necessary to customize the roles to their context.
Methods which are declared as final in the abstract roles cannot
be overwritten, since they represent the interaction among
roles in the scope of the relationship. Further methods can
be declared, but they are not visible from outside since both
the abstract role and the concrete one have the signature of
the role declaration.

Note that the abstract roles are not extended by the classes
participating in the relationship (e.g.,Course andPerson ),
but by roles offered by (i.e., implemented into) these classes.
Otherwise, the classes participating in the relationship could
not extend further classes, thus limiting the code reuse possi-
bilities.

The advantage of these solutions is that roles can share
both the namespace of the relationship object class and the
one of the class offering the roles, as we required above.
This is possible since extending a role implementation is the
same as extending an inner class in Java: roles are compiled
into inner classes. When a class extends an inner class in
Java, it maintains the property that the methods defined in
the inner class it is extending continue to have access to
the outer class instance containing the inner class. If the
inner class is extended by another inner class, the resulting
inner class belongs to the namespaces of both outer classes.
Moreover, the inner class instance has a reference to both
outer class instances so to be able to access their states.
The possible ambiguities of identifiers accessible in the two
outer classes and in the superclass are resolved by using the
name of the outer class as a prefix of the identifier (e.g.,
Course.this.registry ).

This feature of Java, albeit esoteric, has a precise semantics,
as discussed by [19]. We exploit this mechanism for extending

roles in relationship object classes, thus giving a new, more
usable, meaning to this construct and hiding the complexities
to the programmer.

Basing on this idea we propose here an extension of power-
Java, which allows to define abstract roles inside relationship
object classes, and to let standard roles extend them. The
resulting roles will belong both to the namespace of the class
offering them and to the relationship object class. Moreover,
the resulting roles will inherit the methods of the abstract roles.

Note that the abstract roles cannot be instantiated, so that
the are used only to implement both the methods which
define the interaction among the roles, and the methods which
are requested to be contextualized. The former will be final
methods which are inherited, but which cannot be overwritten
in the extending role: they will access the state and methods
of the outer class and of the sibling roles. The latter will be
abstract protected methods, which are used in the final ones,
and which must be implemented in the extending class to tailor
the interaction between the abstract role and the class offering
the role. If these methods are declared as protected they are
not visible outside the package. These methods have access to
the class offering the extending roles.

Besides adding the propertyabstract to roles, three other
additions are necessary in powerJava.

First of all, the methods of the abstract role can make
reference to the outer class of the extending role. This is
realized by means of a reserved variableouter , which is
of type Object since it is not possible to know in advance
which classes will offer the extended role. This variable is
visible only inside abstract roles.

Second, to create a role instance it is necessary to have
at disposal also the relationship object offering the abstract
roles, and the two roles must be created at the same time. For



role Student playedby Person complements BasicCourse {
int giveExam(String work); }

role BasicCourse playedby Course complements Student {
void communicate(String text); }

class AttendBasicCourse{
Student attendee;
BasicCourse attended;

abstract class Student {
int mark;
int number;
//method modelling interaction
final int giveExam(String work){

return mark = evaluate(work);}
//method to be implemented
abstract protected int evaluate(String work);

}

abstract class BasicCourse {
String program;
Person tutor;
//method to be implemented
abstract void communicate(String text);

}

AttendBasicCourse(Person p, Course c, String pr, Person t){
attendee = c.new Student(p,this);
attended = p.new BasicCourse(c,this,t);

}
}

Fig. 10. The new relationship-role pattern

example:

AttendBasicCourse(Person p, Course c){
...
c.new Student(p,this);
p.new BasicCourse(c,this);

}

WhereStudent andBasicCourse are the name of the
concrete roles implemented inp and c and it is the same as
the abstract roles defined in the relation.

The types of the argumentsPerson andCourse are the
requirements of the rolesStudent andBasicCourse .

Moreover, the first and the second argument of the construc-
tor are added by default: the first one represents the player of
the role, while the second one, present only in roles extending
abstract roles, is the reference to the relationship object. This
is necessary since the inner class instance represented by the
role has two links to the two outer classes it belongs to. This
reference is used to invoke the constructor of the abstract role,
as required by Java inner classes, for example, the constructor
of the roleCourse.Student is the following one.

Student(Person p, AttendBasicCourse a){
a.super();
... }

However, these complexities are hidden by powerJava which
adds the necessary parameters and code during precompilation.

The entities related by the relationship must preexist to it:

Person p = new Person();
Course c = new Course();
AttendBasicCource r =

new AttendBasicCourse(p,c);
((c.Student)p).giveExam(w);

Note that the role cast((r.Student)p) is equivalent to
((c.Student)p) .

Third, in the extension of powerJava abstract roles only
come in pairs (e.g.,Student and BasicCourse ). Thus,
the definition of a role must be extended to specify not only
that the possible players comply with the requirements, but
also which role must be offered in turn to play a role. E.g., a
classPerson to play the roleStudent has to offer in turn
the roleBasicCourse . For this reason, the role definition
is extended with the keywordcomplements specifying the
other role of the relation. E.g.,

role Student playedby Person
complements BasicCourse {

int giveExam(String work); }

Thus, a class can play a role not only if it implements the
requirements in the role definition, but also if it offers the role
specified as complementary.

Finally, we add an additional constraint to powerJava: if
a role implementation extends another role, it must have the



class Course {
String code;
String title;
private HashSet<Student> attendees;
private HashTable registry = new HashTable();

class Student extends AttendBasicCourse.Student {
Student(){

Course.this.attendee = this;
}
//abstract method implementation
protected int evaluate(String work){

mark = ...
Course.this.registry.set(that.hashCode(), mark);
return mark;

}
}

}

class Person {
String name;
private Queue messages;
private HashSet<BasicCourse> attended; //courses followed as BasicCourse

class BasicCourse extends AttendBasicCourse.BasicCourse{
BasicCourse(Person t){

tutor=t;
Person.this.attended=this;

}
//abstract method implementation
void communicate (String text) {

Person.this.messages.add(text);
}

}
}

Fig. 11. The new relationship-role pattern

same name. Thus, the abstract and concrete role have the same
requirements. Moreover, it is possible to extend only abstract
roles, while general inheritance among roles is not discussed
here.

In Figures 10 and 11, we report the example used in the
previous sections using the new pattern. Note in particular, that
the classPerson does not have anymore agetMessage
method, like in the example of Figure 7, since the role
BasicCourse of Person has access directly to the private
queue of messages of a person. Moreover, theregistry
of exams in aCourse can be updated when giving an
exam, as in the relationship as attribute solution, since the
role Student has access to the class offering it. Finally, the
methodevaluate is defined inside the role implementation
Student of the classCourse , so that it can be tailored to
different kind of courses.

This example, however, does not show how the interaction
among roles can be separated from the classes of the players
and gathered inside the relationship object class. For this
reason we add also another example.

Consider a relationship like a negotiation protocolCNP
(Contract Net Protocol). It relates two objects: first, an object
of type Manager which plays the role ofInitiator and,

as Initiator , makes calls for proposalscfp ; second, an
object of typeWorker , who is able to execute a task, can play
the role ofParticipant and, as such, to makeproposal s
in return to thecfp . Note that as in the relationship-role as
attributes pattern, theInitiator role is offered byWorker
to allow theManager to call the methodcfp to interact with
theWorker . Viceversa, the roleParticipant is offered by
theManager to theWorker to respond with aproposal to
the Manager . However, differently than in the relationship-
role as attributes pattern all the interaction among the roles
happens inside the abstract roles defined in the classCNP.
In this way, objects entering a negotiation are guaranteed
that the role offered by the other participant is coherent with
the one offered by their own. The only function of the role
Manager.Participant andWorker.Initiator is to
tailor the behavior of the abstract roles to the classes offering
their extensions.

VII. C ONCLUSION

In this paper we discuss why roles need to be introduced
when relationships are modelled in OO programs: it is possible
to distinguish between the natural type of objects populating
the program and the state and behaviors they acquire when



role Initiator playedby InitiatorReq complements Participant {
void cfp(Task task);
void rejectProposal(Proposal proposal);
void acceptProposal(Proposal proposal);
}

role Participant playedby ParticipantReq complements Initiator {
void propose(Proposal proposal);
void refuse();
void inform(String result);
void failure();
}

public class CNP {
final static int STATE_1 = 1;
final static int STATE_2 = 2; //...
int state = STATE_1;

abstract definerole Initiator {
public final void cfp(Task task) throws IllegalPerformativeException {

if (state != STATE_1) throw new IllegalPerformativeException ();
state = STATE_2;
if (evaluateTask(task))

((that.Participant)outer).propose(getProposal(task));
else

((that.Participant)outer).refuse();
}
public final void rejectProposal(Proposal proposal) throws ... {

if (state != STATE_3) throw new IllegalPerformativeException();
state = STATE_4;

}
public final void acceptProposal(Proposal proposal) throws ... {

if (state != STATE_3) throw new IllegalPerformativeException();
if (performTask(proposal, task))

((that.Participant) outer).inform(performTask(proposal,task));
else ((that.Participant)) outer).failure(error);
state = STATE_5;

}//methods to be implemented
abstract protected boolean evaluateTask(Task task);
abstract protected String performTask(Proposal proposal, Task task);
}

abstract definerole Participant {
public final void propose(Proposal proposal) throws ... {

if (state != STATE_2) throw new IllegalPerformativeException();
state = STATE_3;
if (evaluateProposal(proposal))

((that.Initiator)outer).acceptProposal(proposal);
else

((that.Initiator)outer).rejectProposal(proposal);
}

public final void inform(String s) throws ... {
if (state != STATE_2) throw new IllegalPerformativeException();
state = STATE_3;

}
public final void refuse() throws ... {

if (state != STATE_2) throw new IllegalPerformativeException();
state = STATE_6;

}
public final void failure() throws ... {

if (state != STATE_2) throw new IllegalPerformativeException();
state = STATE_7;

}
abstract protected boolean evaluateProposal(Proposal proposal);

}
}

Fig. 12. The CNP example



class Manager implements InitiatorReq{

definerole Participant extends CNP.Participant {
protected boolean evaluateTask(Task task){...}

}
}

class Worker implements ParticipantReq {

definerole Initiator extends CNP.Initiator{
protected String performTask(Proposal proposal, Task task){...}
protected boolean evaluateProposal(Proposal proposal){...}

}
}

public static void main (String[] args){
Worker w = new Worker();
Manager m = new Manager();
CNP c = new CNP(m,w);
try{((w.Initiator)m).cfp(...);}
catch (IllegalPerformativeException e){}; }

}

Fig. 13. The CNP example

they participate in a relationship. The state and behaviors
which are dynamically acquired are modelled by roles.

Using the language powerJava, a role endowed version of
Java, we show how to introduce roles in the two major patterns
for modelling relationships: the relationship as attribute pattern
and the relationship object pattern. We discuss the pros and
cons of both patterns when roles are introduced. In particular,
we show that the relationship as attribute pattern extended with
roles enables to model the extension of behavior of the objects
entering a relationship, without the introduction of a further
class modelling the relationship.

The two resulting patterns differ also for the fact that the
former emphasise the coupling of the role with the class
offering it (e.g., Student and Course ), while the latter
emphasise the coupling of the roles with the relationship class
and with each other.

Finally we propose a new pattern where both couplings can
be considered at the same time: first abstract roles are defined
in the relationship object class, which specify the interaction,
and then the roles are defined in the classes offering them.
This pattern solves the encapsulation problems raised when
relationship are introduced in OO.

Future work includes studying how to introduce roles for
relationship patterns developed for aspect programming, like
the one proposed by Pearce and Noble [12].

REFERENCES

[1] J. Rumbaugh, “Relations as semantic constructs in an object-oriented
language.” inProcs. of OOPSLA, 1987, pp. 466–481.

[2] J. Noble, “Basic relationship patterns,” inPattern Languages of Program
Design 4. Addison-Wesley, 2000.

[3] G. Bierman and A. Wren, “First-class relationships in an object-oriented
language.” inProcs. of ECOOP, 2005, pp. 262–286.

[4] A. Albano, R. Bergamini, G. Ghelli, and R. Orsini, “An object data
model with roles,” inProcs. of Very Large DataBases (VLDB’93), 1993,
pp. 39–51.

[5] J. Noble and J. Grundy, “Explicit relationships in object-oriented devel-
opment,” inProcs. of TOOLS 18, 1995.

[6] N. Guarino and C. Welty, “Evaluating ontological decisions with onto-
clean,” Communications of ACM, vol. 45(2), pp. 61–65, 2002.

[7] F. Steimann, “On the representation of roles in object-oriented and
conceptual modelling,”Data and Knowledge Engineering, vol. 35, pp.
83–848, 2000.

[8] M. Baldoni, G. Boella, and L. van der Torre, “Roles as a coordina-
tion construct: Introducing powerJava,”Electronic Notes in Theoretical
Computer Science, vol. 150, no. 1, pp. 9–29, 2006.

[9] ——, “Modelling the interaction between objects: Roles as affor-
dances,” inProcs. of Knowledge Science, Engineering and Management,
KSEM’06, ser. LNCS, vol. 4092. Berlin: Springer, 2006, pp. 42–54.

[10] ——, “Interaction among objects via roles: sessions and affordances in
powerjava,” inProcs. of PPPJ ’06. New York (NY): ACM, 2006, pp.
188–193.

[11] ——, “Interaction between objects in powerJava,”Journal of Object
Technology, vol. 6, no. 2, pp. 7–12, 2007.

[12] D. Pearce and J. Noble, “Relationship aspects.” inProcs. of AOSD, 2006,
pp. 75–86.

[13] F. Steimann, “A radical revision of UML’s role concept,” inProcs. of
UML2000, 2000, pp. 194–209.

[14] OMG, OMG Unified Modeling Language Specification, Version 1.3,
1999.

[15] I. Jacobson, G. Booch, and J. Rumbaugh,The Unified Software Devel-
opment Process. Addison-Wesley, 1999.

[16] B. Kristensen and K. Osterbye, “Roles: conceptual abstraction theory
and practical language issues,”Theory and Practice of Object Systems,
vol. 2, no. 3, pp. 143–160, 1996.

[17] S. Herrmann, “Object teams: Improving modularity for crosscutting
collaborations,” inProcs. of Net.ObjectDays, 2002.

[18] A. Whitehurst, “Association frameworks in simulation reuse,” inProcs.
of OOS, 1998.

[19] M. Smith and S. Drossopoulou, “Inner classes visit aliasing,” inECOOP
2003 Workshop on Formal Techniques for Java-like Programming, 2003,
2003.


