Adding Roles to Relationship Patterns

Matteo Baldoni
Dipartimento di Informatica
Universi& di Torino - Italy.
Email: baldoni@di.unito.it

Abstract—In this paper we study how roles can be added to
patterns modelling relationships in Object Oriented program-
ming, and which new relationship patterns can be introduced
using roles. Relationships can be introduced in programming
languages either by reducing them to attributes of the objects
which participate in the relationship, or by modelling the rela-
tionship itself as a class whose instances have the participants of
the relationships among their attributes. However, even if roles
have been recognized as an essential component of relationships,
also in modelling languages like UML, they have not been
introduced in Object Oriented programming when it is necessary
to model relationships. Introducing roles allows to add attributes
and behaviors to the participants in the relationship, rather
than to the relationship itself, and to distinguish natural types
as classes participating in the relationships from the roles the
participants acquire in the relationships. In this paper we show
how the role model proposed in powerJava can be used to endow

Guido Boella
Dipartimento di Informatica
Universit di Torino - Italy.

Email: guido@di.unito.it

Leendert van der Torre
University of Luxembourg.
Email: leendert@vandertorre.com

Two main alternatives have been proposed by Noble [2] for
modelling relationships by means of patterns:
« The relationship as attribute pattern: the relationship is

modelled by means of an attribute of the objects which
participate in the relationship. For example, titend
relationship between &tudent and aCourse can

be modelled by means an attributgttended of

the Student and of an attributeattendee of the
Course .

The relationship object pattern: the relationship is mod-
elled as a third object linked to the participants. A class
Attend must be created and its instances related to
each pair of objects in the relationship. This solution
underlies programming languages introducing primitives

relationships with roles, both in the relationship as attribute and for relationships, e.g., Bierman and Wren [3].
in the relationship object pattern. Finally, since these patterns These two solutions have different pros and cons, as No-
have di[)ferer(ljt advalntagehs_ 2nbd Iin?_itatfions, r‘:"e gropose a t?irﬁ' ble [2] discusses. But they both fail to capture an important
pattern ased on roles wnic enefits from the a vantages of the
two previous patterns when modelling relationships. modelling and p_ract|cal issue. If we consider t_he kind of
examples used in the works about the modelling of rela-
tionships, we notice that relationships are also essentially
associated with another concept: students are related to tutors
) , ,) , _or professors [3], [4], basic courses and advanced courses [4],
The r)ged of mtroducmg _the notion of relatlonsh|.p as a first,stomers buy from sellers [5], employees are employed by
class citizen in Object Oriented (OO) programming, in thgmpioyers, underwriters interact with reinsurers fa. From
same way as this notion is used in OO modelling, has begp, knowledge representation point of view, as noticed by
argued by several authors, at least since Rumbaugh [1]. Bfologists like Guarino and Welty [6], these concepts are not
example, one would like to be able to model the following iy ral kinds like person or organization. Rather, they all are
scenario: a student can be related to a university by an €8s involved in a relationship.
rollment relationship, he can attend a course, and give examsgo|es have different properties than natural kinds, and, thus,
Moreover, a course can be a basic course in one curriculyis difficult to model with classes: roles can be played by
qnd an advanced one in another. Similarly, other reIationsh@gjects of different classes, they are dynamically acquired,
link professors to students and courses, students to t@iWrs, {hey depend on other entities - the relationship they belong to
Another example is the case of a contract net protocol, Whejgq their players. Moreover, when an object of some natural
two objects participate in a negotiation relationship, and m&%e plays a certain role in a relationship, it acquires new
this they can perform negotiation moves. properties and behaviors. For example, a student in a course
Relationships are also known as collaborations or assodis a tutor, he can give the exam and get a mark for the exam,
tions, like they are called in UML, to distinguish them fromanother property which exists only as far as he is a student of
specialized relationships like aggregation, relating an objecttlst course.
its parts, and inheritance, relating a class to a superclass. Thus, roles cannot simply be modelled as subclasses or
Rumbaugh [1] claims that relationships are complementasyperclasses of natural types by means of dynamic reclassi-
to, and as important as, objects themselves. Thus, they shdiddtion [7]: a student is not simply a subtype of person nor
not only be present in modelling languages, like ER or UMLlyiceversa.
but they also should be available in programming languagesAs Steimann [7] argues, there is an intrinsic role of roles
either as primitives, or, at least, represented by means a¥ intermediaries between relationships and the objects that
suitable patterns. engage in them. Thus, in this paper, we focus on the following

I. INTRODUCTION

research questions: How to introduce roles in the relationstdgam of the basic course he is attending and it is possible to
as attribute pattern and in the relationship object patters@nd a message to the student of the course. Finally, a course is
Which other patterns are possible for modelling relationshipssociated with a tutor if it is taken as a basic course; the tutor,
when roles are introduced in Object Orientation? As sulhich is not present in advanced courses, can be different for
questions: How to distinguish natural types from roles whesvery student attending it.
designing a program? Which are the pros and cons of theThe relationship as attribute pattern is described in Figure
two patterns when roles are added? How to overcome thethe relationship between a student and a basic course he
limitations of the existing patterns? attends is modelled by means of an attribatiends of the
In this paper we do not propose a new primitive of relanstances of clasStudent which participate in the relation-
tionship in programming languages, but we introduce role$ip. The type of the attribute is a setRdisicCourse . Sym-
in patterns for relationships, and as methodology we use auetrically, theStudent appears in the attributetitendees
model of roles in OO programming languages, an extensioh the classBasicCourse of type set ofStudent . The
which adds roles to the Java programming language, callBdsicCourse is also related with other courses by a rela-
powerJava, described in [8], [9], [10], [11], for which ationship representing the prerequisites.
precompiler has been built. This solution, however, does not allow to add a state and
The language powerJava introduces roles as a way behavior to the elements related by the relationship. For
structure the interaction of an object with other objects callirgkample, it is not possible to specify a different tutor for
their methods. Roles express the possibilities of interactiéachStudent of the BasicCourse . Moreover, theenrol
offered by the object to other ones, i.e., the methods they oaethod is arbitrarily implemented iBasicCourse rather
call. First, these possibilities change according to the cla&gn inStudent
of the callers of the methods. Second, a role maintains thelThe relationship object pattern is instead described in
state of the interaction with a certain individual caller. A§igure 2: the relationshipAttendBasicCourse is mod-
roles have a state and a behavior, they share some propeeitgl by a class whose instances link ea8tudent to
with classes. However, roles can be dynamically acquired aif¢ BasicCourse he attends. The second solution solves
released by an object playing them. Moreover, they can Beme of the issues discussed in this section, in particular, it
played by different types of classes. This is why roles ifacilitates the cohesion of the program, by factoring in the
powerJava can be useful in modelling relationships, where tbl@ss AttendBasicCourse all the relevant information.
behavior of an object changes when it enters a relationshif, particular, the class can contain the properties and the
until it subsequently abandons it. operations which the participants are endowed with when they
In Section Il we discuss why and how relationships arnter the relationship. For exampleStudent can take the
introduced in OO programming. In Section Ill we discus€xam of theBasicCourse and get a mark if he is successful.
the link between relationships and roles. In Section IV whjote that the mark is a property belonging to the relationship.
summarize our model of roles in powerJava and in Sectidforeover, theStudent can be associated with a tutor in a
V we use it to introduce roles in the relationship as attribu@asicCourse
and relationship object patterns. In Section VI, we describeAlso this solution can be modelled in UML, which specifies

a new pattern combining the previous ones. Conclusions dffPrmation proper of an association via an association class,
the paper. where the properties and behaviors of the relationship are

represented. An association class has exactly one instance
[I. INTRODUCING RELATIONS INOO for each set of objects linked through the association and a
To understand the importance of relations in programmiﬁ'@etime delimited by the existence of the association. If a link
consider the efforts done to model relationships in definirig dissolved, the association class instance is destroyed. Due
patterns for them [2], [5], [12] or in extending existingto the association, certain information exists that is specific to
languages like Java [3]. the association. In UML a dashed line is used to specify an
There is not yet a standard language with the relationskgsociation class.
primitive, notwithstanding some interesting proposals like [3]. But the relationship object solution shares with the rela-
Hence, in this paper, to discuss the role of roles in relatiotionship as attribute some limitations. First, we would like
ships, we will focus on patterns for modelling relationshipdo model the university scenario introducing natural types
The most important patterns for modelling relationships al&e Person and Course rather than theStudent and
the relationship as attribute pattern and the relationship obj&asicCourse classes only. The reason for such modelling
pattern [2]. We will not consider here other solutions like thehoice is that &Person is not always aStudent , and he
collection object, mutual friends and active value patterns. can play also other roles at the same time as heSiudent
We will describe these two alternatives with reference toMoreover, aPerson is a Student , and, thus, he can give
university domain. Consider a student who can attend differesams or receive communications concerning the course, only
kind of courses: basic ones and advanced ones. The saftee is related by theAttendBasicCourse relationship
course can be a basic one in the curriculum of a senior studeiith a Course which he follows as &BasicCourse . He
and an advanced one for junior student. A student can give thees different marks in different exams, and even different

class Student {

String name;
int number;
HashSet<BasicCourse> attends; }

class BasicCourse {

String code;

String title;

HashSet<Student> attendees;

HashSet<BasicCourse> prerequisites;

void enrol(Student s) {
attendees.add(s);
s.attends.add(this); } }

Fig. 1. The relationship as attribute pattern

class Student {

String name;
int number; }

class BasicCourse {

String code;
String title; }

class AttendBasicCourse {

BasicCourse attended;

Student attendee;

Person tutor;

int mark;

AttendBasicCourse(Student s, Course c) {
attended = c;
attendee = s; }

int giveExam(String work){mark = ...}

Consider the case of a role customer which can be played
either by a person or by an organization.

Finally, these patterns do not consider a further dimension:
the complexity of encapsulation when relations are considered.
This problem has been highlighted by Noble and Grundy [5]:
“Extra relationship objects existing ‘outside’ their participating
objects may also be seen as breaking the participating object’s
encapsulation [1]. The first point to note here is that many
relationships occur between objects which are themselves
parts of another aggregate object: that is, the relationship and
the participating objects may all be encapsulated by another
object. The second point here is that if encapsulation is
broken by the relationship, this is because the encapsulated
objects need to be accessed by the relationship object in order
to implement the semantics of the relationship. Without the
explicit relationship object, the analysis relationship would
have to be implemented in another way, by being built in to the
participating objects. If the relationship requires access to the
‘inside’ of an object breaking its encapsulation, these objects
would therefore need to break each other's encapsulation
anyway. In short, using an explicit relationship object cannot
worsen breaches of encapsulation. The root of the problem
is not the relationshipobject (i.e., how the relationship is
implemented), but the existence of the relationship as part of
the problem domain.

In some circumstances, relationship objects may actually in-
crease encapsulation, as the implementation of the relationship
itself becomes encapsulated against the participating objects

void communicate(String text{...} } when it is moved in to a separate relationship object.”

In the next section we will explain how roles and relation-

Fig. 2. The relationship object pattern ships are related and how to overcome these problems.

IIl. ROLES AND RELATIONSHIPS

students can have different tutors for the same course. AnalRelations are deeply connected with roles. This is accepted
ogously aCourse has a tutor only if it plays the role of jn several areas: from modelling languages like UML and
BasicCourse ER to knowledge representation discussed in ontologies and
Second, the relationship as attribute allows to add newultiagent systems.
properties and behaviors. However, it does not allow to The link between roles and relationships is explicit in mod-
satisfy completely the requirement that properties and betting languages like UML in the context of collaborations: a
haviors are associated to the participants: this pattern degsssifier role is a classifier like a class or interface, but “since
not distinguish which properties belong to ti8udent the only requirement on conforming instances is that they must
and which ones to theBasicCourse . This problem offer operations according to the classifier role, [...] they may
is more evident in the case of behaviors, since all thg instances of any classifier meeting this requirement” [14].
methods are invoked on the relationship object of clags other words: a classifier role allows any object to fill its
AttendBasicCourse rather than on the two related objectsglace in a collaboration no matter what class it is an instance
Student andBasicCourse . This is not only a modelling of, if only this object conforms to what is required by the
problem. It is not possible to have a method with the samele. Classification by a classifier role is multiple since it does
name which should be called on either particip&tudent not depend on the (static) class of the instance classified, and
and BasicCourse , with a different meaning. Thus, poly-dynamic (or transient) in the sense above: it takes place only
morphism is limited, for example, when the method should kghen an instance assumes a role in a collaboration [15].
specified as part of an interface implemented by both classeqs noticed by Steimann [13], roles in UML are quite similar
participanting in the relationship. to the concept of interface, so that he proposes to unify the
As noticed by Steimann [13], some of these problent&/o concepts. Instead, there is more in roles than in interfaces.
cannot be solved by using subclassing: playing a role is eteimann himself is aware of this fact: “another problem is
equivalent to subclassing @erson becomes &tudent), that defining roles as interfaces does not cover everything one
since a role can be played by instances of different classegght expect from the role concept. For instance, in certain

situations it might be desirable that an object has a separate IV. ROLES IN POWERJAVA
state for each role it plays, even for different occurrences in Baldoni et al. [8], [9], [10], [11] introduce roles as af-

the same role. A person has a different salary and office phane
. : . : grdances in powerJava, an extension of the object oriented

number per job, but implementing the Employee interface . .)
rogramming language Java. powerJava is translated into Java

only entails the existence of one state upon which behavicEJr
d . . . Jy,means of a precompiler, whose details are described in [11].
epends. In these cases, modelling roles as adjunct instan

would seem more appropriate.” %e only summarize here the powerJava language.

To do this, Steimann [7] proposes to model roles as clas—‘]ava Is extended with:

sifiers related to relationships, but such that these classifierd) A construct defining the role with its name, the require-
are not allowed to have instances. In Java terminology, roles Ments and the signatures of the methods offered to the
should be modelled as abstract classes, where some behavior ©biects by playing the role, called powers. _
is specified, but not all the behavior, since some methods are?) The implementation of a role as a class, inside an object,
left to be implemented in the class extending them. These and according to the definition of its powers.
abstract classes representing roles should be then extended I®) A construct for playing a role and invoking the opera-
other classes. However, given that in Java multiple inheritance ~ tions offered to the role.
is not allowed, this solution is not viable, and roles can be We illustrate powerJava by means of an example. Let us
identified to interfaces only. suppose to have a printer which supplies two different ways of
Roles as defined in programming languages [11], [16ccessing it: one as a normal user, and the other as a superuser.
[17], instead, are different from interfaces, even if they shaiormal users have the power to print their jobs and the number
some properties with interfaces, like the fact of being parti@f printable pages is limited to a given maximum. Superusers
specifications of behavior, thus allowing objects of differedtave the power to print any number of pages and can query
classes entering the same role in a relationship. In particulte; the total number of prints done so far. To be a user one
roles have a state, add new operations to their players, didst have an account, which is printed on the pages. The role
depend on a context [11], [17]. specifications are the following:

Also Whitehurst [18] argues that behavior depends on rolggle User playedby Accounted {
“the behavior of an object can change depending on the role it int print(Job job);
plays. When an association is formed between two instances, int getPrintedPages(); }
the behavior of the associated instances is altered in some
. rolé SuperUser playedby Accounted {
way. A real world example is a person who becomes a parent.” . print(Job joby;
The person has a parental association with a young person (a int getTotalPages(); }

child) and the behavior of the person is changed due to this]])]

association”. Requirements must be implemented by the objects which
Pearce and Noble [12] notice that relationships have sir%(-:t as players.

ilarities with roles. Objects in relationships have differeniterface Accounted

properties and behavior: “behavioural aspects have not been{ Login getLogin(); }

considered. That is, the possibility that objects may behaygss Person implements Accounted {

differently when participating in a relationship from when Login login; // ... _

they are not. Consider again the student-course example [...]. Login getLogin() {return login;} }

In practice, a course will have many more attributes, such

as a curriculum, than we have shown. Such attributes Wllgle. To implement roles inside it we revise the notion of Java

change_over time in line with changes to the course. A useﬂ.ﬂ1er class by introducing the new keywordefinerole
constraint .WOUId be to pr_event any Cha”_ge,s when ‘?‘tUdemgtead ofclass followed by the name of the role definition
are attending the course it would be unfair if the curnculuqhat the class is implementing (see the cl&sinter

changed just before the exam! Thus, Course objects bEhf;"Y&ure 3).
differently (i.e., they don't accept changes) when they ar€ as a Java inner class, the methods of a role implementation,

participating in a relatlon"shlp from when they are not ("eCaIIed powers, have access to the private fields and methods
they do accept changes). of the outer class (in the above example the private method

Thus, roles and relationships are strictly related. print of Printer used both in roleUser and in role

In UML, it is possible to specify information and behaviorsuperUser) and of the other roles defined in the outer class.
specific to an association via an association class, but not withis possibility does not disrupt the encapsulation principle
roles, which are partial description of behavior which do n@fince all roles of a class are defined by the same programmer
add anything to their players. who defines the class itself. In other words, an object that has

In conclusion, it seems that besides the relationship objeetssumed a given role, by means of the role’s methods, has
it is necessary to introduce further objects representing thecess and can change the state of the object the role belongs
roles as adjunct instances of new classes. to and of the sibling roles.

Instead, roles are implemented in the class which offers the

in

. _— class Printer {
All the constructors of roles have an implicit first parameter private int totalPrintedPages = O;

to which it must be passed as value the player of the role: toprivate void print(Job job, Login login) {
construct a role we need both the object the role belongs to totalPrintedPages += job.getNumberPages();
(the object the constructew is invoked on) and the player of /I performs printing
the role (the first implicit parameter). This parameter has as
its type the requirements of the role and it is assigned to the qfinerole User {
keywordthat . A role instance is created by means of the int counter = 0:
constructnew starting from the object offering the role and public int print(Job job) {
by specifying the name of the inner class implementing the if (counter > MAX_PAGES_USER)
role which we want to instantiate. This is like it is done in throws new lllegalPrintException();
Java for inner class instance creation. Differently than other counter += job.getNumberbages();

: . o Printer.this.print(job, that.getLogin());
objects, role instances do not exist by themselves and are return counter;}
always associated to their players and to the object the role public int getPrintedPages()
belongs to. { return counter; }

The following instructions create a printer objdéaserl }
and two person objectshris andsergio . chris is a definerole SuperUser {
normal user whilesergio is a superuser. Indeed, instructions public int print(Job job) {

four and five define the roles of these two objects w.r.t. the Printer.this.print(job, that.getLogin());
created printer. return Printer.this.totalPrintedPages;}
public int getTotalpages()
Printer laserl = new Printer(); { return Printer.this.totalPrintedPages; }
}
/lplayers are created as Person }
Person chris = new Person();
Person sergio = new Person(); Fig. 3. ThePrinter class and its roles

[Iroles are created
laserl.new User(chris);

laserl.new SuperUser(sergio); of User andSuperUser offer two different ways to interact

An object has different (or additional) properties when iwvith thePrinter : User counts the printed pages and allows
plays a certain role, and it can perform new activities, the user to print a job if the number of pages printed so far is
powers, as specified by the role definition. Moreover, a roless than a given maximunguperUser does not have such
represents a specific state which is different from the playegslimitation. Moreover,SuperUser is empowered also of
one, which can evolve with time by invoking methods on theiewing the total number of printed pages. Notice that the page
roles. The relationship between the object and the role m@swunter is maintained in the role state and persists through
be transparent to the programmer: it is the object which he#éferent calls to methods performed by a same sender/player
to maintain a reference to its roles. towards the same receiver as long as it plays the role.

The behavior of a role instance depends on the player
instance of the role, so in the method implementation ti@aserl.User) chris).print(jobl);
player instance can be retrieved via a new reserved keywo aserl'su'oeruse.r) sergio).print(job2);

. serl.User) chris).print(job3);
that , which is used only in the role implementation. Insystem.out.printin("The printer printed” +
Figure 3,that.getLogin() is a parameter of the method ((laserl.SuperUser) sergio).getTotalPages());
print

Methods can be invoked from the players, given that the Since an object can play multiple roles, the same method
player is seen in its role. To do this, we introduce the newill have a different behavior depending on the role which the
construct, calledole cast Role casting views an object asPbject is playing when it is invoked. It is sufficient to specify
having a different state and different behaviors when playigich is the role of a given object, we are referring to. In the
different roles. Role casting allows to make transparent to tR§@mplechris — can become als@uperUser of laserl ,
programmer the association of a role and an object instanBgsides being a normaker
the programmer invokes a method of a role on the object erLnew SuperUser(chris)
playing |_t caste_d mFo the role; the language transforms t aserl.Superlﬁ)ser) chris).print(job4);
method invocation in a message sent to the delegated r 8ser1.Usen)chris).print(job5);
instance, which is hidden in its player.

In the example the two users invoke the metipoitit on In this case two different sessions will be kept: one
laserl . They can do this because they have been empowefed chris as normalUser and the other forchris as
of printing by playing their roles. The act of printing is carriedSuperUser . Only when it prints its jobs as a normédker
on by the private methogdrint . Nevertheless, the two rolesthe page counter is incremented.

role Student playedby Person {
int giveExam(String work); }

role BasicCourse playedby Course {
void communicate(String text); }

class Person{
String name;
private Queue messages;

private HashSet<BasicCourse> attended,

definerole BasicCourse {
Person tutor;
void communicate (String text){
Person.this.messages.add(text);}
BasicCourse(Person t){
tutor=t;
Person.this.attended.add(this); }
}
}

class Course {
String code;
String title;
private HashTable registry =
new HashTable();
private HashSet<Student> attendees;
private int evaluate(String x){...}

definerole Student {
int number;
int mark;
int giveExam(String work){
mark = Course.this.evaluate(work);
registry.set(that.hashCode(), mark);
return mark;

}
Student (){
Person.this.attended.add(this); }

Fig. 4. Relationship-role as attribute pattern in powerJava

V. RELATIONSHIPS WITH ROLES USING POWEBAVA

public static void main (String[] args)X{
Course ¢ = new Course();
Person p = new Person();
/lcreate a role Student for p in ¢
Student s = c.new Student(p);
BasicCourse b = p.new BasicCourse(c,tutor);
/lp as a Student of Course c gives the exam
((c.Student)p).giveExam(work);
/la message text is sent
((p.BasicCourse)c).communicate(text); }

Fig. 5. Using the relationship-role as attribute in powerJava

the Course plays the role ofBasicCourse with respect
to the Person (see Figures 4, 5 and 6 where the UML
representation is illustratéd

Thus, the attributeattendees of type Student in
Course is not replaced by one of typPerson . Rather,
Student is defined as role an@erson is a class which
can play the role (see the role definition connecting a role to
the classes playing it). The rotudent is associated with
players of typePerson in the role definition, which specifies
that aStudent can give an exangfveExam). Analogously,
the role BasicCourse is associated with players of type
Course in the role definition, which specifies thatGourse
can communicate with the attendee.

The role Student is implemented locally in the class
Course and, viceversa, the rolBasicCourse is defined
locally in the clas$erson . Note that this is not contradictory,
since roles describe the way an object offers interaction to
another one: &tudent represents how &erson can in-
teract with aCourse , and, thus, the role is defined inside the
classCourse . Moreover the behavior associated with the role
Student , i.e., giving exams, modifies the state of the class
including the role (it access thegistry variable) or calls
its private methodsefvaluate), thus violating the standard
encapsulation. Analogously, th@ommunicate method of
BasicCourse , modifies the state of th®erson hosting
the role by adding a message to the queue. These methods, in
powerJava terminology, exploit the full potentiality of powers

In this section we describe how new patterns for modellirff Violating the standard encapsulation of objects.
relationships with roles can be defined, in analogy with both 10 @ssociate &erson and aCourse in the relationship,
the relationship as attribute and the relationship object pattefi¢ role instances must be created starting from the objects

We will use the example of Section Il to present them.

offering the role, e.g.c.new Student(p) (see themain

First of all, using powerJava we can model instances Bt Figure 5).

natural types likePerson and Course which become,
when they enter
the relationship. This is possible becauSéudent

respectivelyStudent andBasicCourse

When the player of a role must invoke a power it must be

first role casted to the role. For example, to invoke the method

giveExam of Student , the Person must first become a

BasicCourse are roles represented in powerJava by iriudent . To do that, however, also the object offering the
stances associated with the players of the roles, which incl @€ must be specified, since tiierson can play the role

the state and behaviors acquired by the players of the role

the relationship.

éTrlrIdent in different instances o€ourse ; in this case the

Course ¢ : ((c.Student)p).giveExam(...) .

In the relationship-role as attribute pattern, a relation- 1€ alternative relationship-role ~object pattern intro-

ship is not reduced only to two symmetric attribute
basicCourses andattendees . The relationship is mod-
elled also by means of a pair of roles. TRerson plays
the role of Student with respect to theCourse and

duces anAttendBasicCourse class modelling the re-

lationship betweenPerson and Course . However, the

1The arrow starting from a crossed circle, in UML, represents the fact that

the source class can be accessed by the arrow target class.

Person

p:Person RO | Course.Student
el

+name: John that + number: 1234

— messages: ... +mark: 10
- attended: ...
o | :Person.BasicCourse + Student(Person) ® c.Course
- Person.this + giveExam(String) PN
+ tutor: person Course.this |+ code: CS110
+ title: "
+ BasicCourse(Course) Course title: *programming
g S [TTTTTTTTTTTTTmmoooommoooommoooooooooo o - attendees: ...
+ communicate(String) RQ
h that| — evaluate(String)

Fig. 6. The UML representation of the relationship-role as attribute pattern example

AttendBasicCourse class is not linked to &erson and are defined separately in two different classes.

a Course . Rather, thePerson plays the roleStudent in « The role cast to allow a player to invoke a power of its
the classAttendBasicCourse and theCourse the role role requires to know the identity of the other participant
BasicCourse (see Figures 7 and 8). Like in the previ- in the relationship.

ous solution the roles are modelled as classes implemented, It does not allow to distinguish which is the role played
in this pattern, in the claséttendBasicCourse whose in the other object participating in the relationship (e.g.,
instances contain the properties and behaviors added when a Student in the attendees set of a Course
instances oPerson andCourse , respectively, participate in can follow the Course as aBasicCourse or an

the relationship. Additionally, properties and behaviors which AdvancedCourse).

are associated to the relationship itself, like entering in thejyantages of the Relationship-role object pattern:

reIannshlp and_constramts on the participants can be addeg It allows to introduce a state and operations of the
to the relationship class.

To relate aPerson and aCourse in a relationship, relationship besides the state and operations added to the

an instance ofAttendBasicCourse must be created, to- objects entering the ! elationship. . .
ether with an instance &tudent plaved by thePerson o It allows to list all instances of the relationship and
gnd of BasicCourse played by tﬁegoursg To invoke centralize operations like entering the relationship and to

check constraints on the relationship.
a power of Student , a Person must be role casted to . :
. . « It enforces to create both role instances at the same time,
the role Student starting from an instance of the class

AttendBasicCourse since they are linked to the same relation instance, thus

With respect to the previous pattern, it is possible to avoiding the _nsk of Inconsistencies. . .
notice that the roles can interact with each other: the role® It aIIovx{s the integration of the role with the relationship
Student invokes in the methodyiveExam the private and with the other rolle, smc.e.the powers of a rqle
methodevaluate of theBasicCourse role. However, the can access poth. In this way it is possible to deal with
roles cannot anymore access the private state and methods of .T_gor:]déﬂgtf?ollzsgssst E?]Is necessary onlv to know the rela-
the player of the class. For this reason, it is necessary to add . L yonly
a public getMessage method inPerson , and to define t|9nsh|p ms_tance, thus, the other participant can change
evaluate in the role rather than in th€ourse class. \I’;”tg::; r:}c())ttlc;aé uire that the classes of plavers alread

The two patterns have different pros and cons; the following * . q play rready
list integrates Noble [2]'s discussions on them. mpler_nent the role classes. To play a role it is sufficient

Advantages of the Relationship-role as attribute pattern: to satisty the reqwreme.znts. _ _

. It allows simple one-to-one relationships: it does ndpisadvantages of the Relationship-role object pattern:

require a further class and its instance to represent the It requires a further class and its instance.
relationship between two objects. « It does not allow the integration of roles with the objects

« It allows to introduce a state and operations to the objects offering them (e.g..Student is defined separately of

entering the relationship, which was not possible without the classCourse , which, as a consequence, cannot be

roles in the relationship as attribute pattern. accessed). Thus, private variables of classes offering the
« It allows the integration of the role and the element role cannot be accessed anymore (segistry of
offering it by means of powers. Course in Figure 4), otherwise an object is required

« It allows to show which roles can be offered by a class, to offer additional public methods to access them (see
and, thus, in which relationships they can participate, getMessage in Figure 7), which endangers encapsula-
since they are all defined in the class. tion.

Disadvantages of the Relationship-role as attribute pattern: « The roles cannot be tailored anymore with the class
« It requires that the roles are already implemented offline ~ Offering the role. E.g., the methoelvaluate cannot
inside the classes which participate in the relationship. ~ be anymore modelled as a private methodCuafurse :

. It does not assure coherence of the pair of roles like different courses cannot evaluate an exam in different

student-course, buyer-seller, bidder-proponent, since they manners.

role Student playedby Person {
int giveExam(String work); }

role BasicCourse playedby Course {
void communicate(String text); }

class AttendBasicCourse{
Student attendee;
BasicCourse attended;
static Hashset<AttendBasicCourse> all;

definerole Student {
int mark;
int number;
int giveExam(String work){
mark = AttendBasicCourse.this.attended.evaluate(work); }

}

definerole BasicCourse {
String program;
Person tutor;
private int evaluate(String work){...}
void communicate(String text){
/linvoke the requirement of the Person playing the role
AttendBasicCourse.this.attendee.that.getMessage(text);}

}

AttendBasicCourse(Person p, Course c, String p, Person t){
attendee = this.new Student(p);
attended = this.new BasicCourse(c);
AttendBasicCourse.all.add(this);

}

void communicate(String text){
foreach (AttendBasicCourse x: all)

x.attended.communicate(text);}
}

class Person{
String name;
private Queue messages;
void getMessage(String text) {
messages.add(text) };

}

class Course {
String code;
String ftitle;
}

class University{

public static void main (String[] args){
Person p = new Person();
Course ¢ = new Course();
a = new AttendBasicCourse(p,c,program,tutor);
/lp as a Student gives the exam
((a.Student)p).giveExam(work);
/lc is used to send a message
((a.BasicCourse)c).communicate(text);}

Fig. 7. Relationship-role object pattern

a:AttendBasicCourse

- attendee: ...
- attended: ...

+ AttendBasicCourse(...)
+ communicate(String)

AttendBasicCourse.this AttendBasicCourse.this

p:Person :AttendBC.Student :AttendBC.BasicCours c.Course

+name: John +number: 1234 + tutor: person + code: CS110
- messages: ... Person + mark: 10 Course + title: "programming”

—O<------- + BasicCourse(Course,..)- - - - - - - -
+ geth je(String) RQ + Student(Person,...) + communicate(String) RQ
that + giveExam(String) —evaluate(String) that]

Fig. 8. The UML representation of the relationship-role object pattern example

In summary, we can define an informal program transfor- VI. A NEW RELATIONSHIP PATTERN WITH ROLES

mation, which is common to both patterns, to add roles to
relationship patterns using powerJava:

1)

2)

3)

4)

5)

6)

7)

The two relationship patterns added with roles still leave
some unsolved problems. On the one hand, the relationship-
role as attribute pattern allows a strict coupling between the
role and the class offering it. For example, the rStedent
can access the clag®urse when thePerson playing the
Identify the natural types of the objects playing the¢ole gives an exam: the registry of the courses can be added
roles (e.g.,Person for Student , or Person and with a new entry with the mark of that exam.
Organization for Customer). On the other hand, the relationship-role object pattern
Change the type of the classes which participate in tlalows a better coordination of the two roles. All roles of a
relationship from the name of the role to the name aklationship share the same namespace, and, thus, can access
the natural kind playing the role (now there can be moeach other and the relation too. In this way, it is possible
than one class playing the role); e.g., the clagslent to define the interaction between the roles separately from
becomesPerson . the classes of possible players, and to guarantee that that the
Add a role definition relating the role to the natural typemteraction among the players will be performed in the desired
which can play the roles, or to an interface implementeslay. In contrast, the roles are separated from the class offering
by these natural types, and insert in the role definihem in the relationship-role as attribute patterns, and, thus,
tion the signature of the powers (e.ggmmunicate , roles cannot access the classes offering the roles. They only
giveExam). share the relationship hamespace.
Identify the two links to the participants in the rela- So the two patterns offer a tradeoff between the coupling
tions, either in the classes representing the participamtfsthe role together with the class offering Btudent of
(e.g.,attendees of type Student in Course), or a Course , Employee of an Organization , etc), and
in the class representing the relationship (for examplee coordination among the roles. The ideal situation should
attendee of type Student andattended of type allow both aspects to be dealt with. These problems are the
BasicCourse in AttendBasicCourse). result of the complexities concerning encapsulation arising
In the same class the link belongs to, add a role class imhen relatioships are taken seriously, as noted by Noble and
plementing the role definition with the same name as tl@&undy [5] and reported in Section Il.
type of the link (e.g.Student in the BasicCourse A solution is possible in powerJava by exploiting an often
class which is now calle€ourse , or Student and disregarded feature of Java. The idea is as follows, and it is
BasicCourse in AttendBasicCourse). Add to illustrated and in Figure 9 as an UML diagram. First, as in the
this role class the attributes and the implementatiorelationship-role object pattern, a class for creating relationship
according to the role definition, of the powers. objects is created, containing the roles (eS$fydent and
In the code which relates the two participant instanc&asicCourse in AttendBasicCourse), see Figure 10 .
to the relationship, instead of adding the players t®he interaction between the roles is defined at this level since
the links, first create two roles instances played by ththe powers of each role can access the state of the other roles
respective playes, and, second, add these instancesand of the relationship.
the links modelling the relationship (either in the class Differently from the relationship-role pattern, these roles
of the players, e.gPerson or in the class modelling must be defined as abstract and so cannot be instantiated.
the relationship object, e.gAttendBasicCourse). Moreover, the methods containing the details about how these
When a method added by the relationship must barethods describing interaction work can be left unfinished and
invoked, first, make a role cast from the object playindeclared as abstract.
the role to the role it plays. Second, the same roles can be defined according to the
relationship-role as attribute pattern in the classes offering
them (and, thus, they can be developed separately), see Fig-

a:AttendBasicCourse

- attendee: ...
- attended: ... @

+ AttendBasicCourse(...)
+ communicate(String)

AttendBasicCourse.this AttendBasicCourse.this

:AttendBC.Student :AttendBC.BasicCourse
+ number: 1234 + tutor: person
+ mark: 10 + BasicCourse(Course,..|)
+ Student(Person,...) + communicate(String)
- evaluate(String)
4 N
:Student.BasicCourse
+ tutor: person
Course !
c.Course O mm + BasicCourse(Course,.{) Person.this [:-person
RQ ! + communicate(String)
+ cpde: CS110) that ! {) +name: John
+ title: "programming” | — messages: ...
- : Person
Ci thi .
oursefis <@ :Course.Student |~ ---"Toomoooooooooooooooooooooooooo o O—|
’A
{4 + number: 1234 that

+ mark: 10

+ Student(Person,...)
- evaluate(String)

Fig. 9. The UML representation of the new relationship-role pattern

ure 11. However, these roles, rather than being implementedes in relationship object classes, thus giving a new, more

from scratch (e.g.Student andBasicCourse), they ex- usable, meaning to this construct and hiding the complexities
tend the abstract roles of the relationship object class, filling the programmer.

the gaps left by abstract methods in the abstract roles. The. | .)

extension is necessary to customize the roles to their context>asing on this idea we propose here an extension of power-
Methods which are declared as final in the abstract roles cantigy@ Which allows to define abstract roles inside relationship
be overwritten, since they represent the interaction amoHBJeCF classes, gnd to let standard roles extend them. The
roles in the scope of the relationship. Further methods cHppulting roles will belong both to the namespace of the class
be declared, but they are not visible from outside since bogi€"Ng them and to the relationship object class. Moreover,

the abstract role and the concrete one have the Signaturér}%resultmg roles will inherit the methods of the abstract roles.

the role declaration. Note that the abstract roles cannot be instantiated, so that
Note that the abstract roles are not extended by the clasggs are used only to implement both the methods which

participating in the relationship (e.gcourse andPerson), define the interaction among the roles, and the methods which

but by roles offered by (i.e., implemented into) these classege requested to be contextualized. The former will be final

Otherwise, the classes participating in the relationship couigethods which are inherited, but which cannot be overwritten

not extend further classes, thus limiting the code reuse posgithe extending role: they will access the state and methods

bilities. of the outer class and of the sibling roles. The latter will be
The advantage of these solutions is that roles can shafgstract protected methods, which are used in the final ones,

both the namespace of the relationship object class and g which must be implemented in the extending class to tailor

one of the class offering the roles, as we required abovfe interaction between the abstract role and the class offering

This is possible since extending a role implementation is thige role. If these methods are declared as protected they are

same as extending an inner class in Java: roles are compiefl visible outside the package. These methods have access to

into inner classes. When a class extends an inner classtHg class offering the extending roles.

Java, it maintains the property that the methods defined in

the inner class it is extending continue to have access toBesides adding the properpstract to roles, three other

the outer class instance containing the inner class. If tREditions are necessary in powerJava.

inner class is extended by another inner class, the resultinq:irst of all,

. the methods of the abstract role can make
inner class belongs to the namespaces of both outer Clas?&%rence to the outer class of the extending role. This is

Moreover, the inner class instance has a reference to b%}&lized by means of a reserved variablater , which is

outer clags mstan.ce's' S0 to' be 'a'ble to access Fhe'r st Ff)stype Object since it is not possible to know in advance
The possible ambiguities of identifiers accessible in the t ich classes will offer the extended role. This variable is
outer classes and in the superclass are resolved by using\}gﬁ)le only inside abstract roles '

name of the outer class as a prefix of the identifier (e.g.,

Course.this.registry). Second, to create a role instance it is necessary to have
This feature of Java, albeit esoteric, has a precise semantaisdisposal also the relationship object offering the abstract

as discussed by [19]. We exploit this mechanism for extendingles, and the two roles must be created at the same time. For

role Student playedby Person complements BasicCourse {
int giveExam(String work); }

role BasicCourse playedby Course complements Student {
void communicate(String text); }

class AttendBasicCourse{
Student attendee;
BasicCourse attended;

abstract class Student {
int mark;
int number;
/Imethod modelling interaction
final int giveExam(String work){
return mark = evaluate(work);}
//method to be implemented
abstract protected int evaluate(String work);

}

abstract class BasicCourse {
String program;
Person tutor;
/Imethod to be implemented
abstract void communicate(String text);

}

AttendBasicCourse(Person p, Course c, String pr, Person t{
attendee = c.new Student(p,this);
attended = p.new BasicCourse(c,this,t);

}

}
Fig. 10. The new relationship-role pattern

example: The entities related by the relationship must preexist to it:
AttendBasicCourse(Person p, Course c){ Person p = new Person();

Course ¢ = new Course();

c.new Student(p,this); AttendBasicCource r =

p.new BasicCourse(c,this); new AttendBasicCourse(p,c);
} ((c.Student)p).giveExam(w);

WhereStudent andBasicCourse are the name of the Note that the role cag{r.Student)p) is equivalent to
concrete roles implemented pmandc and it is the same as ((c.Student)p)
the abstract roles defined in the relation. Third, in the extension of powerJava abstract roles only

The types of the argumenBerson andCourse are the come in pairs (e.g.Student and BasicCourse). Thus,
requirements of the roleStudent andBasicCourse . the definition of a role must be extended to specify not only

Moreover, the first and the second argument of the constribat the possible players comply with the requirements, but
tor are added by default: the first one represents the playerato which role must be offered in turn to play a role. E.g., a
the role, while the second one, present only in roles extendidigssPerson to play the roleStudent has to offer in turn
abstract roles, is the reference to the relationship object. Thie role BasicCourse . For this reason, the role definition
is necessary since the inner class instance represented byighextended with the keywordomplements specifying the
role has two links to the two outer classes it belongs to. Thigher role of the relation. E.g.,
referenge is used to _invoke the constructor of the abstract rqjae Student playedby Person
as required by Java inner classes, for example, the constructogomplements BasicCourse {

of the roleCourse.Student is the following one. int giveExam(String work); }
Student(Person p, AttendBasicCourse a){ Thus, a class can play a role not only if it implements the
a'S‘;perO' requirements in the role definition, but also if it offers the role

specified as complementary.
However, these complexities are hidden by powerJava whichFinally, we add an additional constraint to powerJava: if
adds the necessary parameters and code during precompila@orole implementation extends another role, it must have the

class Course {
String code;
String ftitle;
private HashSet<Student> attendees;
private HashTable registry = new HashTable();

class Student extends AttendBasicCourse.Student {
Student(){
Course.this.attendee = this;

/labstract method implementation

protected int evaluate(String work){
mark = ...
Course.this.registry.set(that.hashCode(), mark);
return mark;

}
}
}

class Person {
String name;
private Queue messages;
private HashSet<BasicCourse> attended; //courses followed as BasicCourse

class BasicCourse extends AttendBasicCourse.BasicCourse{
BasicCourse(Person t){
tutor=t;
Person.this.attended=this;

/labstract method implementation
void communicate (String text) {

Person.this.messages.add(text);
}

}
}

Fig. 11. The new relationship-role pattern

same name. Thus, the abstract and concrete role have the sasriaitiator , makes calls for proposalsp ; second, an
requirements. Moreover, it is possible to extend only abstraathject of typeWorker , who is able to execute a task, can play
roles, while general inheritance among roles is not discussbeé role ofParticipant and, as such, to malgoposal s
here. in return to thecfp . Note that as in the relationship-role as
In Figures 10 and 11, we report the example used in taéributes pattern, thimitiator role is offered byworker
previous sections using the new pattern. Note in particular, thatallow theManager to call the methoafp to interact with
the classPerson does not have anymore getMessage theWorker . Viceversa, the rol@articipant is offered by
method, like in the example of Figure 7, since the rolheManager to theWorker to respond with groposal to
BasicCourse of Person has access directly to the privatehe Manager . However, differently than in the relationship-
queue of messages of a person. Moreover, regstry role as attributes pattern all the interaction among the roles
of exams in aCourse can be updated when giving anhappens inside the abstract roles defined in the dGdR
exam, as in the relationship as attribute solution, since the this way, objects entering a negotiation are guaranteed
role Student has access to the class offering it. Finally, théhat the role offered by the other participant is coherent with
methodevaluate is defined inside the role implementatiorihe one offered by their own. The only function of the role
Student of the classCourse , so that it can be tailored to Manager.Participant andWorker.Initiator is to
different kind of courses. tailor the behavior of the abstract roles to the classes offering
This example, however, does not show how the interactiéfeir extensions.
among roles can be separated from the classes of the players
and gathered inside the relationship object class. For this
reason we add also another example. In this paper we discuss why roles need to be introduced
Consider a relationship like a negotiation proto€@NP when relationships are modelled in OO programs: it is possible
(Contract Net Protocol). It relates two objects: first, an objetd distinguish between the natural type of objects populating
of type Manager which plays the role ofnitiator and, the program and the state and behaviors they acquire when

VII. CONCLUSION

role Initiator playedby InitiatorReq complements Participant {
void cfp(Task task);
void rejectProposal(Proposal proposal);
void acceptProposal(Proposal proposal);

}

role Participant playedby ParticipantReq complements Initiator {
void propose(Proposal proposal);
void refuse();
void inform(String result);
void failure();

public class CNP {
final static int STATE 1
final static int STATE_2
int state = STATE_1;

2; /...

abstract definerole Initiator {
public final void cfp(Task task) throws lllegalPerformativeException {

if (state !'= STATE_1) throw new lllegalPerformativeException ();

state = STATE_2;

if (evaluateTask(task))
((that.Participant)outer).propose(getProposal(task));

else
((that.Participant)outer).refuse();

public final void rejectProposal(Proposal proposal) throws ... {
if (state != STATE_3) throw new lllegalPerformativeException();
state = STATE_4;

public final void acceptProposal(Proposal proposal) throws ... {
if (state != STATE_3) throw new lllegalPerformativeException();
if (performTask(proposal, task))
((that.Participant) outer).inform(performTask(proposal,task));
else ((that.Participant)) outer).failure(error);
state = STATE_S5;
Y/methods to be implemented
abstract protected boolean evaluateTask(Task task);
abstract protected String performTask(Proposal proposal, Task task);

}

abstract definerole Participant {
public final void propose(Proposal proposal) throws ... {

if (state != STATE_2) throw new lllegalPerformativeException();

state = STATE_3;

if (evaluateProposal(proposal))
((that.Initiator)outer).acceptProposal(proposal);

else
((that.Initiator)outer).rejectProposal(proposal);

public final void inform(String s) throws ... {
if (state != STATE_2) throw new lllegalPerformativeException();
state = STATE_3;

public final void refuse() throws ... {
if (state = STATE_2) throw new lllegalPerformativeException();
state = STATE_6;

public final void failure() throws ... {
if (state = STATE_2) throw new lllegalPerformativeException();
state = STATE_7;

}

abstract protected boolean evaluateProposal(Proposal proposal);

Fig. 12. The CNP example

class Manager implements InitiatorReq{

definerole Participant extends CNP.Participant {
protected boolean evaluateTask(Task task){...}

}
}

class Worker implements ParticipantReq {

definerole Initiator extends CNP.Initiator{

protected String performTask(Proposal proposal, Task task){...}

protected boolean evaluateProposal(Proposal proposal){...}

}
}

public static void main (String[] args){
Worker w = new Worker();
Manager m = new Manager();
CNP ¢ = new CNP(m,w);
try{((w.Initiator)m).cfp(...);}
catch (lllegalPerformativeException e){}; }

Fig. 13. The CNP example

they participate in a relationship. The state and behaviols] J. Noble and J. Grundy, “Explicit relationships in object-oriented devel-

which are dynamically acquired are modelled by roles.

Using the language powerJava, a role endowed version 661]
Java, we show how to introduce roles in the two major patterns]
for modelling relationships: the relationship as attribute pattern
and the relationship object pattern. We discuss the pros am
cons of both patterns when roles are introduced. In particular,
we show that the relationship as attribute pattern extended wi
roles enables to model the extension of behavior of the obje
entering a relationship, without the introduction of a further

class modelling the relationship.

The two resulting patterns differ also for the fact that the
former emphasise the coupling of the role with the clasgsi]

offering it (e.g., Student and Course), while the latter
emphasise the coupling of the roles with the relationship cl
and with each other.

Finally we propose a new pattern where both couplings ¢
be considered at the same time: first abstract roles are defi
in the relationship object class, which specify the interactiofis]

and then the roles are defined in the classes offering th

This pattern solves the encapsulation problems raised w

relationship are introduced in OO.

Future work includes studying how to introduce roles fot’]
relationship patterns developed for aspect programming, likg,

the one proposed by Pearce and Noble [12].

REFERENCES

[1] J. Rumbaugh, “Relations as semantic constructs in an object-oriented

language.” inProcs. of OOPSLA1987, pp. 466—481.
[2] J. Noble, “Basic relationship patterns,”Rattern Languages of Program
Design 4 Addison-Wesley, 2000.

[3] G. Bierman and A. Wren, “First-class relationships in an object-oriented

language.” inProcs. of ECOOP2005, pp. 262-286.

[4] A. Albano, R. Bergamini, G. Ghelli, and R. Orsini, “An object data

model with roles,” inProcs. of Very Large DataBases (VLDB'93p93,
pp. 39-51.

opment,” inProcs. of TOOLS 181995.

N. Guarino and C. Welty, “Evaluating ontological decisions with onto-
clean,” Communications of ACMvol. 45(2), pp. 61-65, 2002.

F. Steimann, “On the representation of roles in object-oriented and
conceptual modelling,Data and Knowledge Engineeringol. 35, pp.
83-848, 2000.

M. Baldoni, G. Boella, and L. van der Torre, “Roles as a coordina-
tion construct: Introducing powerJava&lectronic Notes in Theoretical
Computer Sciengevol. 150, no. 1, pp. 9-29, 2006.

——, “Modelling the interaction between objects: Roles as affor-
dances,” inProcs. of Knowledge Science, Engineering and Management,
KSEM'06 ser. LNCS, vol. 4092. Berlin: Springer, 2006, pp. 42-54.
——, “Interaction among objects via roles: sessions and affordances in
powerjava,” inProcs. of PPPJ '06 New York (NY): ACM, 2006, pp.
188-193.

——, “Interaction between objects in powerJavdd@urnal of Object
Technologyvol. 6, no. 2, pp. 7-12, 2007.

D. Pearce and J. Noble, “Relationship aspectsProcs. of AOSD2006,

pp. 75-86.

F. Steimann, “A radical revision of UML’s role concept,” IArocs. of
UML200Q 2000, pp. 194-209.

OMG, OMG Unified Modeling Language Specification, Version, 1.3
1999.

I. Jacobson, G. Booch, and J. Rumbaughe Unified Software Devel-
opment Process Addison-Wesley, 1999.

B. Kristensen and K. Osterbye, “Roles: conceptual abstraction theory
and practical language issue3heory and Practice of Object Systems
vol. 2, no. 3, pp. 143-160, 1996.

S. Herrmann, “Object teams: Improving modularity for crosscutting
collaborations,” inProcs. of Net.ObjectDay2002.

A. Whitehurst, “Association frameworks in simulation reuse,Frocs.

of O0S 1998.

M. Smith and S. Drossopoulou, “Inner classes visit aliasinge@OOP
2003 Workshop on Formal Techniques for Java-like Programming,,2003
2003.

