
Declarative representation of curricula models: an
LTL- and UML-based approach

Matteo Baldoni, Cristina Baroglio,
Giuseppe Berio, and Elisa Marengo

Dipartimento di Informatica — Università degli Studi di Torino
C.so Svizzera, 185 — I-10149 Torino (Italy)

{baldoni,baroglio,berio}@di.unito.it
elisa.mrng@gmail.com

Abstract—In this work, we present a constrained-based rep-
resentation for specifying the goals of “course design”, that
we call curricula model, and introduce a graphical language,
grounded into Linear Time Logic, to design curricula models
which include knowledge of proficiency levels. Based on this
representation, we show how model checking techniques can be
used to verify that the user’s learning goal is supplied by a
curriculum, that a curriculum is compliant to a curricula model,
and that competence gaps are avoided. This proposal represents
the most recent advancement of a work, carried on in the last
years, in which we are investigating the use of both agents and
web services for building and validating curricula. We also outline
future research directions.

I. INTRODUCTION AND MOTIVATIONS

As recently underlined by other authors, there is a strong
relationship between the development of peer-to-peer, (web)
service technologies and e-learning technologies [22]. The
more learning resources are freely available through the Web,
the more modern e-learning management systems (LMSs)
should be able to take advantage from this richness: LMSs
should offer the means for easily retrieving and assembling e-
learning resources so to satisfy specific users’ learning goals,
similarly to how (web) services are retrieved and composed
[17]. In [6], we have shown the possibility of automatically
composing SCORM [1] courseware by exploiting semantic
web technology and, in particular, LOM annotations. More
rcently [3], we have developed a reasoning service that has
been integrated in the Personal Reader framework, a service-
oriented learning platform. The reasoning service is basically
a planner, which can build curricula in a goal-driven way,
where the goal is a set of desired competences. The reasoner
is invoked in a service-oriented fashion to help a user and
build a curriculum. To this aim, the reasoner is fed with a set
of initial competences that the user has, the competences that
the user would like to acquire, and the URL of a repository
of descriptions of courses, given as RDF triples.

Besides building curricula, there are other interesting tasks
that can be performed. Some of these concern curricula which
are supplied directly by users. As in a composition of web
services it is necessary to verify that, at every point, all the
information necessary to the subsequent invocation will be
available, in a learning domain, it is important to verify that

all the competencies, i.e. the knowledge, necessary to fully
understand a learning resource are introduced or available
before that learning resource is accessed. The composition of
learning resources, a curriculum, does not have to show any
competence gap. Unfortunately, this verification, as stated in
[15], is usually performed manually by the learning designer,
with hardly any guidelines or support.

A recent proposal for automatizing the competence gap
verification is done in [22] where an analysis of pre- and
post-requisite annotations of the Learning Objects (LO), rep-
resenting the learning resources, is proposed. A logic based
validation engine can use these annotations in order to validate
the curriculum/LO composition. Melia and Pahl’s proposal is
inspired by the CocoA system [12], that allows to perform the
analysis and the consistency check of static web-based courses.
Competence gaps are checked by a prerequisite checker for
linear courses, simulating the process of teaching with an
overlay student model. Pre- and post-requisites are represented
as “concepts”.

Together with the verification of consistence gaps, there
are other kinds of verification. Brusilovsky and Vassileva [12]
sketch some of them. In our opinion, two are particularly im-
portant: (a) verifying that the curriculum allows to achieve the
users’ learning goals, i.e. that the user will acquire the desired
knowledge, and (b) verifying that the curriculum is compliant
against the course design goals. Manually or automatically
supplied curricula, developed to reach a learning goal, should
match the “design document”, a curricula model, specified
by the institution that offers the possibility of personalizing
curricula. Curricula models specify general rules for designing
sequences of learning resources (courses). We interpret them
as constraints, that are expressed in terms of concepts and, in
general, are not directly associated to learning resources, as
instead is done for pre-requisites. They constrain the process
of acquisition of concepts, independently from the resources.

The availability of languages for designing curricula models,
in a way that can automatically be processed by a reasoning
system (be it an agent or a service) is a fundamental milestone
in the development of checkers that perform the verifications
described above, so to supply the the user and, when present,
also the organization which supplies the courses, with a



complete set of tools to develop personalized, sound and
complete curricula.

In this paper we present a constraint-based representation
of curricula models. Constraints are expressed as formulas in
a temporal logic (LTL, linear temporal logic [16]) represented
by means of a simple graphical language that we call DCML
(Declarative Curricula Model Language). This logic allows
the verification of properties of interest for all the possible
executions of a model, which in our case corresponds to
the specific curriculum. Curricula are represented as activity
diagrams [2]. We translate an activity diagram, that represents
a curriculum, in a Promela program [21] and we check, by
means of the well-known SPIN Model Checker [21], that it
respect the model by verifying that the set of LTL formulas
are satisfied by the Promela program. Moreover, we check
that learning goals are achieved, and that the curriculum does
not contain competence gaps. This work also improves the
proposal of [9], where we did not consider the duration of
courses and the fact that they may (partially) overlap. This
leads to a different representation based on the concept of
milestones. As in [15], we distinguish between competency
and competence, where by the first term we denote a concept
(or skill) while by the second we denote a competency plus the
level of proficiency at which it is learnt or known or supplied.
So far, we do not yet tackle with “contexts”, as defined in
the competence model proposed in [15], which will be part of
future work.

This approach differs from previous work [7], where we
presented an adaptive tutoring system, that exploits reasoning
about actions and changes to plan and verify curricula. The
approach was based on abstract representations, capturing the
structure of a curriculum, and implemented by means of
prolog-like logic clauses. Such representations were applied a
procedure-driven form of planning, in order to build personal-
ized curricula. In this context, we proposed also some forms of
verification, of competence gaps, of learning goal achievement,
and of whether a curriculum, given by a user, is compliant to
the “course design” goals. The use of procedure clauses is,
however, limiting because they, besides having a prescriptive
nature, pose very strong constraints on the sequencing of
learning resources. In particular, clauses represent what is
“legal” and whatever sequence is not foreseen by the clauses is
“illegal”. However, in an open environment where resources
are extremely various, they are added/removed dynamically,
and their number is huge, this approach becomes unfeasible:
the clauses would be too complex, it would be impossible
to consider all the alternatives and the clauses should change
along time.

For this reason we considered as appropriate to take an-
other perspective and represent only those constraints which
are strictly necessary, in a way that is inspired by the so
called social approach proposed by Singh for multi-agent
and service-oriented communication protocols [23], [24]. In
this approach only the obligations are represented. In our
application context, obligations capture relations among the
times at which different competencies are to be acquired. The

advantage of this representation is that we do not have to
represent all that is legal but only those necessary conditions
that characterize a legal solution. To make an example, by
means of constraints we can request that a certain knowledge
is acquired before some other knowledge, without expressing
what else is to be done in between. If we used the clause-based
approach, instead, we should have described also what can
legally be contained between the two times at which the two
pieces of knowledge are acquired. Generally, the constraints-
based approach is more flexible and more suitable to an open
environment.

II. DCML: A DECLARATIVE CURRICULA MODEL
LANGUAGE

In this section we describe the Declarative Curricula Model
Language (DCML, for short), a graphical language to repre-
sent the specification of a curricula model (the course design
goals). The advantage of a graphical language is that drawing,
rather than writing, constraints facilitates the user, who needs
to represent curricula models, allowing a general overview of
the relations which exist between concepts. DCML is inspired
by DecSerFlow, the Declarative Service Flow Language to
specify, enact, and monitor web service flows by van der
Aalst and Pesic [26]. DCML, as well as DecSerFlow, is
grounded in Linear Temporal Logic [16] and allows a curricula
model to be described in an easy way maintaining at the
same time a rigorous and precise meaning given by the logic
representation. LTL includes temporal operators such as next-
time (©ϕ, the formula ϕ holds in the immediately following
state of the run), eventually (♦ϕ, ϕ is guaranteed to eventually
become true), always (¤ϕ, the formula ϕ remains invariably
true throughout a run), until (α U β, the formula α remains
true until β), see also [21, Chapter 6]. The set of LTL
formulas obtained for a curricula model are, then, used to
verify whether a curriculum will respect it [5]. The adoption
of a graphical language with a logical grounding allows
designers, who cannot be expected to feel comfortable with the
logical notation, to take advantage of automatic tools for the
verification of the various kinds of properties mentioned in the
introduction. As an example of curricula model, Fig. 1 shows
a curricula model expressed in DCML. Every box contains
at least one competence. Boxes/competences are related by
arrows, which represent (mainly) temporal constraints among
the times at which they are to be acquired. Altogether the
constraints describe a curricula model.

A. Competence, competency, and basic constraints

The terms competence and competency are used, in the
literature concerning professional curricula and e-learning, to
denote the “effective performance within a domain at some
level of proficiency” and “any form of knowledge, skill,
attitude, ability or learning objective that can be described in
a context of learning, education or training”. In the following,
we extend a previous proposal [5], [10] so as to include a
representation of the proficiency level at which a competency



Fig. 1. An example of curricula model in DCML.

is owned or supplied. To this aim, we associate to each compe-
tency a variable k, having the same name as the competency,
which can be assigned natural numbers as values. The value
of k denotes the proficiency level; zero means absence of
knowledge. Therefore, k encodes a competence, Fig. 2(a). On
competences, we can define three basic constraints.

The “level of competence” constraint, Fig. 2(c), imposes that
a certain competency k must be acquired at least at level l. It is
represented by the LTL formula ♦(k ≥ l). Similarly, a course
designer can impose that a competency must never appear in
a curriculum with a proficiency level higher than l. This is
possible by means of the “always less than level” constraint,
shown in Fig. 2(d). The LTL formula ¤(k < l) expresses this
fact (it is the negation of the previous one). As a special case,
when the level l is one (¤(k < 1)), the competency k must
never appear in a curriculum.

The third constraint, represented by a double box, see Fig. 2
(b), specifies that k must belong to the initial knowledge with,
at least, level l. In other words, the simple logic formula (k ≥
l) must hold in the initial state.

To specify relations among concepts, other elements are
needed. In particular, in DCML it is possible to represent
Disjunctive Normal Form (DNF) formulas as conjunctions and
disjunctions of concepts. For the sake of semplicity, in the next
section we present the various constraints that can be expressed
by DCML without using DNF, the interested reader can find
the extension in the appendix.

B. Positive and negative relations among competences

Besides the representation of competences and of con-
straints on competences, DCML allows to represent relations
among competences. For simplicity, in the following presenta-
tions we will always relate simple competences, it is, however,
of course possible to connect DNF formulas. We will denote
by (k, l) the fact that competence k is required to have at least
level l (i.e. k ≥ l) and by ¬(k, l) the fact that k is required to
be less than l.

Arrows ending with a little-ball, Fig. 2(f), express the
before temporal constraint between two competences, that
amount to require that (k1, l1) holds before (k2, l2). This

constraint can be used to express that to understand some
topic, some proficiency of another is required as precondition.
It is important to underline that if the antecedent never
becomes true, also the consequent must be invariably false;
this is expressed by the LTL formula ¬(k2, l2) U (k1, l1),
i.e. (k2 < l2) U (k1 ≥ l1). It is also possible to express
that a competence must be acquired immediate before some
other. This is represented by means of a triple line arrow that
ends with a little-ball, see Fig. 2(i). The constraint (k1, l1)
immediate before (k2, l2) imposes that (k1, l1) holds before
(k2, l2) and the latter either is true in the next state w.r.t. the
one in which (k1, l1) becomes true or k2 never reaches the
level l2. The difference w.r.t the before constraint is that it
imposes that the two competences are acquired in sequence.
The corresponding LTL formula is “(k1, l1) before (k2, l2)”
∧¤((k1, l1) ⊃ (©(k2, l2) ∨¤¬(k2, l2))).

Both of the two previous relations represent temporal
constraints between competences. The implication relation
(Fig. 2(e)) specifies, instead, that if a competency k1 holds
at least at the level l1, some other competency k2 must be
acquired sooner or later at least at the level l2. The main
characteristic of the implication, is that the acquisition of the
consequent is imposed by the truth value of the antecedent, but,
in case this one is true, it does not specify when the consequent
must be achieved (it could be before, after or in the same
state of the antecedent). This is expressed by the LTL formula
♦(k1, l1) ⊃ ♦(k2, l2). The immediate implication (Fig. 2(h)),
instead, specifies that the consequent must hold in the state
right after the one in which the antecedent is acquired. Note
that, this does not mean that it must be acquired in that state,
but only that it cannot be acquired after. This is expressed by
the LTL implication formula in conjunction with the constraint
that whenever k1 ≥ l1 holds, k2 ≥ l2 holds in the next state:
♦(k1, l1) ⊃ ♦(k2, l2) ∧¤((k1, l1) ⊃ ©(k2, l2)).

The last two kinds of temporal constraint are succession
(Fig. 2(g)) and immediate succession (Fig. 2(j)). The succes-
sion relation specifies that if (k1, l1) is acquired, afterwards
(k2, l2) is also achieved; otherwise, the level of k2 is not
important. This is a difference w.r.t. the before constraint
where, when the antecedent is never acquired, the consequent



Fig. 2. Competences (a) and basic constraints (b), (c), and (d). Relations among competences: (e) implication, (f) before, (g) succession, (h) immediate
implication, (i) immediate before, (j) immediate succession, (k) not implication, (l) not immediate before.

must be invariably false. Indeed, the succession specifies a
condition of the kind if k1 ≥ l1 then k2 ≥ l2, while
before represents a constraint without any conditional premise.
Instead, the fact that the consequent must be acquired after
the antecedent is what differentiates implication from succes-
sion. Succession constraint is expressed by the LTL formula
♦(k1, l1) ⊃ (♦(k2, l2) ∧ (¬(k2, l2) U (k1, l1))). In the same
way, the immediate succession imposes that the consequent
either is acquired in the same state as the antecedent or
in the state immediately after (not before nor later). The
immediate succession LTL formula is “(k1, l1) succession
(k2, l2)” ∧¤((k1, l1) ⊃ ©(k2, l2)).

After the “positive relations” among competences, let us
now introduce the graphical notations for “negative rela-
tions”. The graphical representation is very intuitive: two
vertical lines break the arrow that represents the constraint,
see Fig. 2(k)-(l). (k1, l1) not before (k2, l2) specifies that k1

cannot be acquired up to level l1 before or in the same state
when (k2, l2) is acquired. The corresponding LTL formula
is ¬(k1, l1) U ((k2, l2) ∧ ¬(k1, l1)). Notice that this is not
obtained by simply negating the before relation but it is
weaker; the negation of before would impose the acquisition
of the concepts specified as consequents (in fact, the formula
would contain a strong until instead of a weak until), the not
before does not. The not immediate before is translated exactly
in the same way as the not before. Indeed, it is a special
case because our domain is monotonic, that is a competency
acquired at a certain level cannot be forgotten.

(k1, l1) not implies (k2, l2) expresses that if (k1, l1) is
acquired k2 cannot be acquired at level l2; as an LTL formula:
♦(k1, l1) ⊃ ¤¬(k2, l2). Again, we choose to use a weaker
formula than the natural negation of the implication relation
because the simple negation of formulas would impose the
presence of certain concepts. (k1, l1) not immediate implies
(k2, l2) imposes that when (k1, l1) holds in a state, k2 ≥ l2
must be false in the immediately subsequent state. Afterwards,
the proficiency level of k2 does not matter. The correspond-
ing LTL formula is ♦(k1, l1) ⊃ (¤¬(k2, l2) ∨ ♦((k1, l1) ∧
©¬(k2, l2))), that is weaker than the “classical negation” of
the immediate implies.

The last relations are not succession, and not immedi-

ate succession. The first imposes that a certain competence
cannot be acquired after another, (either it was acquired
before, or it will never be acquired). As LTL formula, it is
♦(k1, l1) ⊃ (¤¬(k2, l2)∨ “(k1, l1) not before (k2, l2)”). The
second imposes that if a competence is acquired in a certain
state, in the state that follows, another competence must be
false, that is ♦(k1, l1) ⊃ (¤¬(k2, l2)∨ “(k1, l1) not before
(k2, l2)” ∨♦((k1, l1) ∧©¬(k2, l2))).

In Fig. 1, some examples of constraints are represented.
Conjunctions and disjunctions are represented by connecting
different competences (boxes) with and/or circles. For in-
stance, Object programming in Java is required at least at
level 4 or Object programming is required at least at level 2,
before the competence Java Programming can be acquired (at
least at level 5).

Another example is the implication that occurs, for instance,
between Database, at least at level 2, and Database, at least
at level 4. This relation means that Database at level 2 is not
sufficient and, when it is acquired, sooner or later the student
must increase its knowledge at least at level 4.

The competence (Database,4) is also connected with an not
immediate succession constraint to the competence (Applica-
tion on Oracle DB,4). This constraint can be interpreted as
the intention to let the student assimilate the knowledges on
Database before applying them on a real case.

Note that this example is divided into two different areas,
one concerning programming competences and one about
databases. There are no connection between competences of
the two parts. Anyway all the constraints must be checked on
the curriculum.

III. REPRESENTING CURRICULA AS ACTIVITY DIAGRAMS

Let us now consider specific curricula. In the line of [7], [4],
[5], we represent curricula as sequences of courses/resources,
taking the abstraction of courses as simple actions. Any action
can be executed given that a set of preconditions holds; by
executing it, a set of post-conditions, the effects, will become
true. Specifically, courses are seen as actions for acquiring
some concepts (effects) given that the student owns some
competences (preconditions). So, a curriculum is seen as a
sequence of actions that causes transitions from the initial set



Fig. 3. Activity diagram representing a curriculum with mandatory and additional, student chosen, courses. Swimlanes represent the sequencings of courses.
Vertical divisions capture the different milestones (trimesters).

of competences (possibly empty) of a user up to a final state
that will contain also the acquired competences. We assume
that concepts can only be added to states and competence
level can only grow by executing the actions of attending
courses (or more in general reading a learning material). The
intuition behind this assumption is that new course do not
erase the concepts acquired previously, thus knowledge grows
incrementally.

Generally speaking, a curriculum may be represented with
one or several sequences of courses to be attended, in alter-
native or as obligations. As a consequence, it seems very
natural representing a curriculum by, for instance, a UML
activity diagram [2]. The diagram represents essentially the
“student personal process” to achieve the final degree. Apart its
standard meaning and visualisation, a UML activity diagram
may contain actions with pre- and post- conditions, combined
in complex paths and possibly aggregated. Actions or activ-
ities (if further decomposed) correspond to courses or other
elements, used to fundamentally build any curriculum in an
organisation. Activity diagrams are rich enough to represent
alternative, intermediate statuses and conditional paths.

However, we found very useful two principles when rep-
resenting a curriculum: To carefully distinguish courses with
distinct duration (in time); To carefully distinguish manda-
tory courses and additional optional courses. Modelling a
curriculum with these two principles in mind introduces (i)
a decomposition level and (ii) partitions among courses, being
these courses from mandatory or from additional partitions.

Actvity diagrams are well suited for representing curricula
under the two principle reported above. Fig. 3 reports an

example with additional courses and distinguishes courses
with distinct duration. The horizontal partition (swimlanes in
UML) is corresponding to mandatory and additional courses
(additional courses are for “database specialists” in this case).
Vertical partitions provide information about actions and activ-
ities with distinct duration. In this case, we have used as time
references the usual distinction implemented in Italian univer-
sities, in years and trimesters. The beginning/ending points of
the trimesters correspond to a set of milestones; this temporal
organization will be used to identify those states, at which the
verification will be applied. In previous work, instead, courses
were atemporal and each state was tied to the simulation
of a single course. The introduction of durations allows a
more realistic representation of the curricula and, especially,
of the dependencies between competences. Therefore, we can
easily see that the course “Logics” is delivered during the
first trimester, while the course “Java I” is delivered in the
first six months, being this java course part of an aggregated
set of courses corresponding to the activity named “Computer
Programming I”. In the horizontal bottom swimlane, we are
representing the fact that it is a student’s choice to advance in
the first year two courses of databases, once made the choice
between “Database architecture” and “Database applications”.
The swimlanes representing additional courses can be used to
represented once-time choice of the student. For instance, once
the student has decided to become “database specialist”, he has
to complete the process represented in the swimlane. However,
with additional swimlanes, we can also represent less stringent
choices. In this case, however, there are typically no arrows



between courses and there is no final node. It should also be
noted that processes representing a curriculum are only views
combining activities and actions (i.e. the real taught courses).
Intuitively, a course like “Network I” in a curriculum for sys-
tem specialists is to be followed by “Network II”; however, the
same is not required in a curriculum for “database specialists”.
This is very compatible with UML activity diagrams where it
is possible to use reuse, in distinct contexts, activities and
actions defined once.

More complex cases require special attention because hier-
archical decomposition of the time-based partition does not
apply directly. For instance, the case of where one two-
trimester course overlaps in time with another two-trimester
course. In this case, hierarchical time-based partition cannot
be applied but it should be observed that the basic activity
diagram is sufficient also in this case because it allows to rep-
resent the two courses in parallel. Indeed, due to overlapping,
we cannot expect one to supply competences that are pre-
requisites for the other. Again, with reference to our example,
in Fig. 3, the course “Databases” spans over the second and
the third trimester, partially overlapping with the “Computer
Programming 1” activity (spanning over the first and second
trimester) and partly overlapping with “Operating Systems”,
in the third trimester.

UML 2.1.1 is extremely powerful for making partitions.
Indeed, partitions apply to activities, and contain several edges
and actions. This means that each activity can be indepen-
dently partitioned in the diagram. However, the size of the
visualised partitions does not make sense in UML (as well).
Therefore, time overlapping can be shown by regulating the
size and the relative position of the several visualised parti-
tions; however, the “timed semantics” remains underspecified
and may be approached in the classical way by introducing
time-dependent constraints on activity edges (or, on top of the
interpretation of the UML superstructure specification that
often does not provide a sufficient level of detail constraints
attached to the partitions themselves).

IV. VERIFYING CURRICULA BY MEANS OF SPIN MODEL
CHECKER

In this section we discuss how to validate a curriculum. As
explained, three kinds of verifications have to be performed:
(1) verifying that a curriculum does not have competence gaps,
(2) verifying that a curriculum supplies the user’s learning
goals, and (3) verifying that a curriculum satisfies the course
design goals, i.e. the constraints imposed by the curricula
model. To do this, we use model checking techniques [14].

By means of a model checker, it is possible to generate and
analyze all the possible states of a program exhaustively to
verify whether no execution path satisfies a certain property,
usually expressed by a temporal logic, such as LTL. When a
model checker refuses the negation of a property, it produces
a counterexample that shows the violation. SPIN, by G. J.
Holzmann [21], is the most representative tool of this kind.
Our idea is to translate the activity diagram, that represents a
set of curricula, in a Promela (the language used by SPIN)

program, and, then to verify whether it satisfies the LTL
formulas that represents the curricula model.

In the literature, we can find some proposals to translate
UML activity diagrams into Promela programs, such as [18],
[19]. These proposals have a different purpose than ours and
they cannot directly be used to perform the translation that
we need to perform the verifications we list above, however,
it is possible to follow them as guidelines to perform our
translation. Generally, their aim is debugging UML designs, by
helping UML designers to write sound diagrams. The transla-
tion proposed in the following, instead, aims to simulate, by a
Promela program the acquisition of competencies by attending
courses contained into the curricula represented by an activity
diagram.

Given a curriculum as an activity diagram, we represent all
the competences involved by its courses as integer variables.
In the beginning, only those variables that represent the initial
knowledge owned by the student are set to a value greater
than zero. Courses are represented as actions that can modify
the value of such variables. Since our application domain is
monotonic, the value of a variable can only grow.

The Promela program corresponds to a process, that con-
tains the translation of the UML activity diagram and simu-
lates the way competences are acquired, for all the curricula
represented by the activity diagram, updating the set of the
achieved competences at every step. Steps corrispond to the
various milestones into which the curriculum is organized.
For instance, in Fig. 3 we identify the initial state, a second
state corresponding to the end of the first trimester, another
corresponding to the end of the second trimester, and a final
state, corresponding to the end of the curriculum.

proctype CurriculumVerification() {
milestone_1();
milestone_2();
milestone_3();
LearningGoal();

}

If the simulation of all its possible executions ends, then, there
is no competence gap.

Each course is represented by its preconditions and its
effects. For example, the course “Databases” is as follows:

inline preconditions_course_databases() {
assert(logical_reasoning >= 4);

}
inline effects_course_databases() {
SetCompetenceState(database, 2);
SetCompetenceState(relational_algebra, 4);
SetCompetenceState(ER_language, 4);

}

assert verifies the truth value of its condition, which in our case
is the precondition to the course. If violated, SPIN interrupts its
execution and reports about it. SetCompetenceState increases
the level of the passed competence if its current level is lower
than the second parameter. If all the curricula represented by
the translated activity diagram have no competence gaps, no
assertion violation will be detected. Otherwise, a counterexam-
ple will be returned that corresponds to an effective sequence
of courses leading to the violation, giving a precise feedback



to the student/teacher/course designer of the submitted set of
curricula.

Generally speaking, a milestone implements the act of
adding to the state all the competencies that have been
acquired within itself, plus the act of checking the applicability
of the subsequent courses (those that will lead to the next
milestone). Since each curriculum contains both mandatory
and additional courses, the latter depending on a student’s
choice, every milestone verifies, by default, the mandatory
courses and simulates the different alternatives concerning
additional courses, which the student might has chosen. This is
done by means of the introduction of a variable that is used to
discriminate among the alternative paths. Decision and merge
nodes can be used to represent such altenatives.

inline milestone() {
atomic {

preconditions_course_java_programming_II();
if
:: (path == 1) ->

preconditions_course_logic();
:: (path == 2) ->

precondition_course_physics();
:: else -> skip;
fi;
effects_course_java_programming_II();
if
:: (path == 1) ->

effects_course_logic();
:: (path == 2) ->

effects_course_physics();
:: else -> skip;
fi;

}
}

The test of the preconditions and the update of the state are
performed as an atomic operation.

The last instruction of the process CurriculumVerification,
which is applied only if all the curricula can be executed to
their end, is LearningGoal. LearningGoal performs the check
of the user’s learning goal. This just corresponds to a test
on the knowledge in the ending state. For example, a student
interested in web and databases could have the goal:

inline LearningGoal()
{ assert(advanced_java_programming>=5
&& N_tier_architectures >= 4
&& relational_algebra>=2
&& ER_language>=2); }

To check if the curriculum complies to a curricula model, we
check if every possibly sequence of execution of the Promela
program satisfies the LTL formulas, now transformed into
never claims directly by SPIN. The assertion verification is
not computationally expensive. The automata generated from
the Promela program encoding the first three years of courses
at our University is still tractable. Also the verification of the
temporal constraints is not hard if we check the constraints
one at the time.

V. CONCLUSIONS

In this paper we have introduced a graphical language to
describe curricula models as temporal constraints posed on the
acquisition of competences (supplied by courses), therefore,

taking into account both the concepts supplied/required and
the proficiency level. We have also shown how model checking
techniques can be used to verify that a curriculum complies
to a curricula model, and also that a curriculum both allows
the achievement of the user’s learning goals and that it has
no competence gaps. This use of model checking is inspired
by [26], where LTL formulas are used to describe and verify
the properties of a composition of Web Services. Another
recent work, though in a different setting, that inspired this
proposal is [25], where medical guidelines, represented by
means of the GLARE graphical language, are translated in
a Promela program, whose properties are verified by using
SPIN. Similarly to [25], the use of SPIN, gives an automa-
based semantics to a curriculum (the automaton generated
by SPIN from the Promela program) and gives a declarative,
formal, representation of curricula models (the set of temporal
constraints) in terms of a LTL theory that enables other forms
of reasoning. In fact, as for all logical theories, we can use
an inference engine to derive other theorems or to discovery
inconsistencies in the theory itself.

The presented proposal is an evolution of earlier works [8],
[4], [7], where we applied semantic annotations to learning
objects, with the aim of building compositions of new learning
objects, based on the user’s learning goals and exploiting
planning techniques. That proposal was based on a different
approach that relied on the experience of the authors in the
use of techniques for reasoning about actions and changes
which, however, suffers of the limitations discussed in the
introduction. We are currently working on the automatic
translation from a textual representation of DCML curricula
models into the corresponding set of LTL formulas and
from a textual representation of an activity diagram, that
describes a curriculum (comprehensive of the description of
all courses involved with their preconditions and effects), into
the corresponding Promela program. We are also going to
realize a graphical tool to define curricula models by means of
DCML. We think to use the Eclipse framework, by IBM, to
do this. In [3], we discuss the integration into the Personal
Reader Framework [20] of a web service that implements
an earlier version of the techniques explained here, which
does not include proficiency levels. Last but not least, if in
a University framework the notion of competence that we
have used is sufficient to represent and reason about curricula,
in business organizations this notion usually requires more
complex models. As future work, we mean to integrate the
proposed approach with the CRAI competence model [13] and
with competence management information systems [11].

Acknowledgements.

The authors would like to thank Viviana Patti for the helpful
discussions. This research has partially been funded by the
European Commission and by the Swiss Federal Office for
Education and Science within the 6th Framework Programme
project REWERSE number 506779 (cf. http://rewerse.net),
and it has also been supported by MIUR PRIN 2005 “Specifi-
cation and verification of agent interaction protocols” national



project.

REFERENCES

[1] ADL Technical Team. SCORM XML controlling document -
SCORM CAM version 1.3 navigation XML XSD version 1.0, 2004.
http://www.adlnet.org/.

[2] Unified Modeling Language: Superstructure, version 2.1.1. OMG,
February 2007.

[3] M. Baldoni, C. Baroglio, I. Brunkhorst, E. Marengo, and V. Patti.
Curriculum Sequencing and Validation: Integration in a Service-Oriented
Architecture. In Proc. of EC-TEL’07, LNCS, 2007. Springer.

[4] M. Baldoni, C. Baroglio, and N. Henze. Personalization for the Semantic
Web. In Reasoning Web, LNCS 3564 Tutorials, pp. 173–212. Springer-
Verlag, 2005.

[5] M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and L. Torasso. Verifying
the compliance of personalized curricula to curricula models in the
semantic web. In Proc. of Int.l Workshop SWP’06, at ESWC’06, pp.
53–62, 2006.

[6] M. Baldoni, C. Baroglio, V. Patti, and L. Torasso. Reasoning about
learning object metadata for adapting SCORM courseware. In Proc.
EAW’04, 2004.

[7] M. Baldoni, C. Baroglio, and V. Patti. Web-based adaptive tutoring: an
approach based on logic agents and reasoning about actions. Artificial
Intelligence Review, 22(1):3–39, 2004.

[8] M. Baldoni, C. Baroglio, V. Patti, and L. Torasso. Reasoning about
learning object metadata for adapting SCORM courseware. In Proc.
of Int.l Workshop EAW’04, at AH 2004, pp. 4–13, Eindhoven, The
Netherlands, August 2004.

[9] M. Baldoni, C. Baroglio, and E. Marengo. Curricula model checking.
In Proc. of AIIA’07. To appear.

[10] M. Baldoni and E. Marengo. Curricula model checking: declarative
representation and verification of properties. In Proc. of EC-TEL’07,
LNCS, 2007. Springer.

[11] G. Berio and M. Harzallah. Knowledge Management for Competence
Management. J. of Universal Knowledge Management, 1:21–28, 2005.

[12] P. Brusilovsky and J. Vassileva. Course sequencing techniques for large-
scale web-based education. Int. J. Cont. Engineering Education and
Lifelong learning, 13(1/2):75–94, 2003.

[13] M. Harzallah and F. Vernadat. IT-based Competency Modeling and
Management: from theory to practice in enterprise engineering and
operations. Computers in industry, 48:157–179, 2002.

[14] O. E. M. Clarke and D. Peled. Model checking. MIT Press, 2001.
[15] J. L. De Coi, E. Herder, A. Koesling, C. Lofi, D. Olmedilla, O. Papa-

petrou, and W. Sibershi. A model for competence gap analysis. In Proc.
of WEBIST 2007.

[16] E. A. Emerson. Temporal and model logic. In Handbook of Theoretical
Computer Science, volume B, pages 997–1072. Elsevier, 1990.

[17] R. Farrell, S. D. Liburd, and J. C. Thomas. Dynamic assebly of learning
objects. In Proc. of WWW 2004, New York, USA, May 2004.

[18] M. del Mar Gallardo, P. Merino, and E. Pimentel. Debugging UML
Designs with Model Checking. Journal of Object Technology, 1(2):101–
117, July-August 2002.

[19] N. Guelfi and A. Mammar. A Formal Semantics of Timed Activity
Diagrams and its PROMELA Translation. In Proc. of APSEC’05, pp.
283–290. 2005.

[20] N. Henze and D. Krause. Personalized access to web services in the
semantic web. In The 3rd Int.l Workshop SWUI, at ISWC 2006, 2006.

[21] G. J. Holzmann. The SPIN Model Checker. Addison-Wesley, 2003.
[22] M. Melia and C. Pahl. Automatic Validation of Learning Object

Compositions. In Proc. of IT&T’2005: Doctoral Symposium, Carlow,
Ireland, 2006.

[23] M. P. Singh. Agent communication languages: Rethinking the principles.
IEEE Computer, 31(12):40–47, 1998.

[24] M. P. Singh. A social semantics for agent communication languages.
In In Issues in Agent Communication, number 1916 in LNCS, pages
31–45. Springer, 2000.

[25] P. Terenziani, L. Giordano, A. Bottrighi, S. Montani, and L. Donzella.
SPIN Model Checking for the Verification of Clinical Guidelines. In
Proc. of ECAI 2006 Workshop on AI techniques in healthcare, Riva del
Garda, August 2006.

[26] W. M. P. van der Aalst and M. Pesic. DecSerFlow: Towards a Truly
Declarative Service Flow Language. In Proc. of WS-FM’06, LNCS,
2006. Springer.

APPENDIX

Let k be a competence, we denote by (k, l) the con-
straint k ≥ l and by ¬(k, l) the constraint k < l. A
conjuctive competence formula cf is a conjuction of atomic
competence constraints cf = (k1, l1) ∧ · · · ∧ (kn, ln). A
conjunction can also be interpreted as the set of constraints
cf = {(k1, l1), . . . , (kn, ln)}. We can extend the definition of
negation, level of competence, always less than level, and next
to a conjunctive competence formula as follow:
• negation(cf) =

∧
(ki,l1)∈cf ¬(ki, li);

• existence(cf) =
∧

(ki,li)∈cf ♦(ki, li);
• absence(cf) =

∧
(ki,li)∈cf ¤¬(ki, li);

• possibility(cf) =
∧

(ki,li)∈cf (♦(ki, li) ∨¤¬(ki, li)).
• next(cf) =

∧
(ki,li)∈cf ©(ki, li).

A disjunctive normal competence formulae dnf is a disjunc-
tion of conjunctive competence formulas, dnf = cf1 ∨ · · · ∨
cfn. Again, we also denote a disjunctive normal competence
formula as a set of conjuctive competence formulas dnf =
{cf1, . . . , cfn}. Therefore, a disjunctive normal competence
formula is a set of sets of atomic competences.

The positive relations presented in Section II-B can be
generalised to a DNF formula as follows:
• dnf1 before dnf2:

∨
cfi∈dnf1,cfj∈dnf2

negation(cfj) U cfi;
• dnf1 immediate before dnf2:

∨
cfi∈dnf1,cfj∈dnf2

cfi before cfj ∧¤(cfi ⊃ (next(cfj) ∨ absence(cfj)));
• dnf1 implies dnf2:

∨
cfi∈dnf1,cfj∈dnf2

existence(cfi) ⊃
existence(cfj);

• dnf1 immediate implies dnf2:
∨

cfi∈dnf1,cfj∈dnf2

cfi implies cfj ∧¤(cfi ⊃ next(cfj));
• dnf1 succession dnf2:

∨
cfi∈dnf1,cfj∈dnf2

existence(cfi) ⊃ (existence(cfj) ∧ cfi before cfj);
• dnf1 immediate succession dnf2:

∨
cfi∈dnf1,cfj∈dnf2

cfi succession cfj ∧¤(cfi ⊃ next(cfj)).
The negative relations presented in Section II-B can be

generalised to a DNF formula as follows:
• dnf1 not before dnf2:

∨
cfi∈dnf1,cfj∈dnf2

negation(cfi) U (cfj ∧ negation(cfi));
• dnf1 not immediate before dnf2:

∨
cfi∈dnf1,cfj∈dnf2

negation(cfi) U (cfj ∧ negation(cfi));
• dnf1 not implies dnf2:

∨
cfi∈dnf1,cfj∈dnf2

existence(cfi) ⊃ absence(cfj);
• dnf1 not immediate implies dnf2:

∨
cfi∈dnf1,cfj∈dnf2

existence(cfi) ⊃ (absence(cfj) ∨ ♦(cfi ∧
next(negation(cfj))));

• dnf1 not succession dnf2:
∨

cfi∈dnf1,cfj∈dnf2

existence(cfi) ⊃ (absence(cfj) ∨ cfi not before cfj);
• dnf1 immediate succession dnf2:

∨
cfi∈dnf1,cfj∈dnf2

existence(cfi) ⊃ (absence(cfj) ∨ cfi not before cfj ∨
♦(cfi ∧ next(negation(cfj)))).


