

Abstract—In this paper we present a multi-agent search

technique to face the NP-hard single machine total weighted
tardiness scheduling problem in presence of sequence-dependent
setup times. The search technique is called Discrete Particle
Swarm Optimization (DPSO): differently from previous
approaches the proposed DPSO uses a discrete model both for
particle position and velocity and a coherent sequence metric.
We tested the proposed DPSO over a benchmark available
online. The results obtained show the competitiveness of our
DPSO, which is able to outperform the best known results for the
benchmark, and the effectiveness of the DPSO swarm
intelligence mechanisms.

Index Terms—Particle Swarm Optimization, Swarm
Intelligence, Scheduling

I. INTRODUCTION
In this paper we propose a new DPSO approach to face the

single machine total weighted tardiness scheduling with
sequence-dependent setup times (STWTSDS) problem.
Scheduling with performance criteria involving due dates,
such as (weighted) total tardiness or total earliness and
tardiness (E-T), and that takes into account sequence-
dependent setups, is a reference problem in many real
industrial contexts. Meeting due dates is in fact recognized as
the most important objective in surveys on manufacturing
practise, e.g., in [1]. The objective of minimizing the total
weighted tardiness has been the subject of a very large amount
of literature on scheduling even if sequence-dependent setups
have not been so frequently considered. Setups usually
correspond to preparing the production resources (e.g., the
machines) for the execution of the next job, and when the
duration of such operations depends on the type of last
completed job, the setups are called sequence-dependent. The
presence of sequence-dependent setups greatly increases the
problem difficulty, since it prevents the application of
dominance conditions used for simpler tardiness problems [2].
The choice of the STWTSDS problem as reference application
for the proposed DPSO approach has then two main
motivations: first the fact that the solution of single machine
problems is often required even in more complex
environments [3], and second the absence, to the best authors’
knowledge, of any other DPSO approach in literature for the

STWTSDS problem. Regarding the latter point, note that the
approach in [4] seems to be the only previous DPSO
application to the single machine total weighted tardiness
(STWT) problem.

The rest of the paper is organized as follows. Section 2
introduces a formal problem definition and provides a general
review of the relevant literature for it. Section 3 illustrates the
basic aspects of the PSO algorithm, analysing in particular the
DPSO approaches previously proposed in the literature.
Section 4 then describes the proposed DPSO approach,
discussing how it can be applied to the STWTSDS problem
and highlighting the new features introduced. Section 5
presents the experimental campaign performed, which is
mainly based on the benchmark set generated by Cicirello in
[5] and available on the web. Finally, Section 6 draws some
conclusions.

II. THE STWTSDS PROBLEM
The STWTSDS problem corresponds to the scheduling of n

independent jobs on a single machine. All the jobs are
released simultaneously, i.e., they are ready at time zero, the
machine is continuously available and it can process only one
job at a time. For each job j=1,..., n, the following quantities
are given: a processing time pj, a due date dj and a weight wj.
A sequence-dependent setup time sij must be waited before
starting the processing of job j if it is immediately sequenced
after job i. The tardiness of a job j is defined as Tj=max(0, Cj-
dj), being Cj the job j completion time. The scheduling
objective is the minimization of the total weighted tardiness

expressed as ∑ =

n

j jjTw
1

. This problem, denoted as

1/sij/∑wjTj, is strongly NP-hard since it is a special case of the
1//∑wjTj that has been proven to be strongly NP-hard in [6].
In the literature both exact algorithms and heuristic algorithms
have been proposed for the STWTSDS problem or for a
slightly different version disregarding the job weights.
However, since only instances of small dimensions can be
solved by exact approaches, recent research efforts have been
focused on the design of heuristics. The apparent tardiness
cost with setups (ATCS) heuristic [7] is currently the best
constructive approach for the STWTSDS problem.
Constructive heuristics require a small computational effort,
but they are generally outperformed by improvement

A Swarm Intelligence Method Applied to
Manufacturing Scheduling

Davide Anghinolfi, Antonio Boccalatte, Alberto Grosso, Massimo Paolucci, Andrea Passadore,
Christian Vecchiola, DIST – Department of Communications Computer and System Sciences,

University of Genova

approaches, based on local search algorithms, and
metaheuristics, which on the other hand are much more
computational time demanding. The effectiveness of such
approaches has been largely demonstrated: for example, Potts
and van Wassenhove [8] show as simple pair-wise interchange
methods outperform dispatching rules for the STWT problem,
as well as more recently constructive heuristics appear
dominated by a memetic algorithm in [9] or by a hybrid
metaheuristic in [10] where a similar parallel machine case is
considered. The effectiveness of stochastic search procedures
for the STWTSDS is shown in [11], where the authors
compare a value-biased stochastic sampling (VBSS), a VBSS
with hill-climbing (VBSS-HC) and a simulated annealing
(SA), to limited discrepancy search (LDS) and heuristic-
biased stochastic sampling (HBSS) on a 120 benchmark
problem instances for the STWTSDS problem defined by
Cicirello [5]. The literature about applications of
metaheuristics to scheduling is quite extended. In [12] an ant
colony optimization (ACO) algorithm for the STWTSDS is
proposed, which is able to improve about 86% of the best
known results for the Cicirello’s benchmark previously found
by stochastic search procedures in [11]. Recently the
Cicirello’s best known results have been further independently
improved in [13] by means of a GA approach, in [14] with
three SA, GA and tabu search (TS) algorithms, and in [15]
using an ACO approach; in particular, the new set of best
known results established by Lin and Ying [14], which
improved more than 71% of the previous best known
solutions, was lastly updated by the ACO by Anghinolfi and
Paolucci [15] that was able to improve 72.5% of the Lin and
Ying solutions.

III. OVERVIEW OF THE BASIC PSO ALGORITHM AND ITS
DISCRETE VARIANT

Particle Swarm Optimization (PSO) algorithm is a recent
metaheuristic approach motivated by the observation of the
social behaviour of composed organisms, such as bird
flocking and fish schooling, and it tries to exploit the concept
that the knowledge to drive the search for optimum is
amplified by social interaction. PSO executes a population-
based search procedure in which the exploring agents, called
particles, adjust their positions during time (the particles fly)
according not only to their own experience, but also to the
experience of other particles: in particular, a particle may
modify its position with a velocity that in general includes a
component moving the particle towards the best position so
far achieved by the particle itself to take into account its
personal experience, and a component moving the particle
towards the best solution so far achieved by any among a set
of neighbouring particles (local neighbourhood) or by any of
the exploring particles (global neighbourhood). PSO is based
on the Swarm Intelligence (SI) concept [16]. This is a
particular agent-based modelling technique which mostly
relies on the cooperation among large number of simple
agents in order to model an autonomous self-organizing
system for solving optimization problems. The agents are able
to exchange information in order to share experiences, and the

performance of the overall multi-agent system (the swarm)
emerges from the collection of the simple agents’ interactions
and actions. PSO has been originally developed for
continuous nonlinear optimization ([17]; [18]). The basic
algorithm for a global optimization problem, corresponding to
the minimization of a real objective function f(x), uses a
population (swarm) of m particles. Each particle i of the
swarm is associated with a position in the continuous n-
dimensional search space, xi=(xi1,…, xin) and with the
correspondent objective value f(xi) (fitness). For each particle
i, the best previous position, i.e. the one where the particle
found the lowest objective value (personal best), and the last
particle position change (velocity) are recorded and
represented respectively as pi=(pi1,…, pin) and vi=(vi1,…, vin).
The position associated with the current smallest function
value is denoted as g=(g1,…, gn) (global best). Denoting with

k
ix and k

iv respectively the position and velocity of particle i at
iteration k of the PSO algorithm, the following equations are
used to iteratively modify the particles’ velocities and
positions:

)()(2211
1 k

i
k
ii

k
i

k
i xgrcxprcvwv −⋅+−⋅+⋅=+ (1)

11 ++ += k
i

k
i

k
i vxx (2)

where w is the inertia parameter that weights the previous
particle’s velocity; c1 and c2, respectively called cognitive and
social parameter, multiplied by two random numbers r1 and r2
uniformly distributed in [0, 1], are used to weight the velocity
towards the particle’s personal best,)(k

ii xp − , and the

velocity towards the global best solution,)(k
ixg − , found so

far by the whole swarm. The new particle position is
determined in (2) by adding to the particle’s current position
the new velocity computed in (1). The PSO parameters that
must be fixed are the inertia w, the cognitive and social
parameters c1 and c2, and finally the dimension of the swarm
m.

In recent years several studies applying the PSO approach
to discrete combinatorial optimization problems appeared in
the literature; however, to the best authors’ knowledge, none
of them faced the STWTSDS problem. PSO has been applied
to combinatorial optimization problems, as travelling
salesman problem (TSP) [19], vehicle routing problem [20],
and scheduling problems ([4]; [12]; [21]; [22]; [23]; [24]).
DPSO approaches differ both for the way they associate a
particle position with a discrete solution and for the velocity
model used; in particular, we could classify DPSO approaches
in the literature according to three kinds of solution-particle
mapping, i.e., binary, real-valued and permutation-based, and
three kinds of velocity model used, i.e., real-valued, stochastic
or based on a list of moves. The first DPSO algorithm
proposed in [25] is characterized by a binary solution
representation and a stochastic velocity model since it
associates the particles with n-dimensional binary variables
and the velocity with the probability for each binary
dimension to take value one. A variation of this DPSO to face
flow shop scheduling problems is defined in [26]. A different
model is used in [4] to develop a PSO algorithm for the
STWT problem and in [27] for the total flowtime

minimization in permutation flow shop problems: using a
technique similar to the random key representation [28], real
values are associated with the particle dimensions to represent
the job place in the scheduling sequence and the smallest
position value (SPV) rule is exploited to transform the particle
positions into job permutations. Permutation-based solution-
particle mappings are used in [29] for the n-queens problem
together with a stochastic velocity model, representing the
probability of swapping items between two permutation
places, and a mutation operator, consisting of a random swap
executed whenever a particle coincides with the local (global)
best one.

The velocity models used in all the DPSO approaches
above mentioned are either stochastic or real-valued. To the
best authors’ knowledge the unique example of velocity
model based on a list of moves can be found in the DPSO
approach for the TSP in [30]. The reason why this kind of
model has not been investigated in the scheduling literature
may be explained by the main difficulty of defining new
appropriate sum and multiplication operators for equations (1)
and (2) to make them work in a discrete solution space.
Nevertheless, in the following section we propose a new
DPSO approach to single machine scheduling based on both a
permutation solution-particle representation and on a list-of-
moves velocity model.

IV. THE PROPOSED DPSO APPROACH
To pursuit our purpose we will need to redefine all the

arithmetical operators involved in equations (1) and (2). This
redefinition will lead in general to build unfeasible sequences
(pseudo-sequences) that will be fixed and converted in
feasible sequences with a procedure called sequence
completion procedure.

Let us first introduce some notation. In general, a solution
x to the problem of scheduling n independent jobs on a single
machine is associated with a sequence σ=([1],...,[n]). In
addition we denote with φσ:{1,..., n}→{1,..., n}, the mapping
between the places in a sequence σ and the indices of the
sequenced jobs; for example, if job j is sequenced in the h-th
place of σ we have j= φσ(h). In the proposed DPSO we
consider a set of m particles; each particle i is associated with
a sequence σi, i.e., a schedule xi, and it has a fitness given by
the cost value Z(xi). Thus, the space explored by the flying
particles is the one of the sequences. In the following we
introduce a metric for such a space, called sequence metric,
that is, a set of operators to compute velocities and to update
particles’ positions consistently.

A. The particle velocity and the sequence metric operators

Given a pair of particles p and q, we define the distance
between them as the difference between the associated
sequences (position difference), i.e., σq-σp, which corresponds
to a list of moves that we call pseudo-insertion (PI) moves.
We denote a PI move as (j, d), where d is the integer
displacement that must be applied to job j to direct the particle
p toward q. Roughly speaking, assuming for example that
j=φσ(h), a positive displacement d corresponds to a towards-
right move that extracts job j from its current place h and

reinserts it in place min(h+d, n) in the sequence, so generating
a new sequence σ’ such that j=φσ’(min(h+d, n)), and a
corresponding solution x’; analogously, a negative
displacement -d corresponds to a towards-left extraction and
reinsertion move that generates a new sequence such that
j=φσ’(max(h-d, 0)). The difference between the positions of
two particles p and q defines a velocity v, which consequently
is a set of PI moves; then, applying the PI moves in v to p we
can move this particle to the position of particle q. The
following example would simply illustrate this concept. Let
the number of jobs n=4 and the sequences corresponding to
the positions of two particles p and q respectively σp=(1,2,3,4)
and σq=(2,3,1,4); then, the velocity associated with the
difference between the two positions is
v=σq-σp={(1,2),(2,-1),(3,-1)}; here the PI move (1, 2) denotes
that job 1 must be delayed (moved towards-right) of 2 places
in the sequence to direct particle p towards q. Note that a
velocity can include at most a single PI move for a given job.
The reason why we denote as “pseudo-insertion” such kind of
moves is that, as detailed in the following, in general the rule
used to apply the PI moves in a velocity to a sequence may
fail to produce a feasible sequence, but it may produce a so-
called pseudo-sequence, and we need to introduce a final
sequence completion procedure to correctly implement
equation (2) in the sequence metric.
The position-velocity sum operator applies one PI move
composing the velocity at a time, first to the initial sequence
and then to the pseudo-sequences successively obtained,
hereafter denoted by π.

B. The sequence completion procedure

In general, the pseudo-sequences produced do not
correspond to feasible sequences since some sequence places
may be left empty whereas some others may contain a list of
jobs. If, for example, we apply the move (1,2) to σp=(1,2,3,4),
we obtain the pseudo-sequence π=(-,2,[3,1],4), where “- “
denotes that no job is assigned to the first place of π, whereas
[3,1] represents the ordered set of jobs assigned to the third
place of π. Let us denote with π(h) the ordered set of items in
the h-th place of the pseudo-sequence π; with pull(s) the
function that extracts the first element from an ordered set s,
and with push(i, s) the function that inserts the element i at the
bottom of the set s. Then, in order to convert a pseudo-
sequence into a feasible sequence, the sequence completion
procedure manages π(h) as a first-in-first-out (FIFO) list, as
reported in Fig. 1.

As an example, the behaviour of such a procedure for a
pseudo-sequence π=([1,3],-,-,[4,2]) is shown in Fig. 2.

Input: π a pseudo-sequence
Output: σ a feasible sequence
for each h=1,...,n
{
 if |π(h)|=1 skip;
 else if |π(h)|=0
 {
 repeat
 k=h+1;
 while k<n and |π(k)|=0
 π(h)=pull(π(k));
 }
 else if |π(h)|>1
 {
 while |π(h)|>1
 push(pull(π(h), π(h+1));
 }
}
σ=π;

Fig. 1: The sequence completion procedure.

Fig. 2: An example of sequence completion procedure execution.

The procedure considers one place at a time of π starting
from the first one on the left; since an ordered set of jobs is
encountered in place h=1, then the first job is extracted and
reinserted in the first following empty position (h=2), thus, the
pseudo-sequence is updated as (3,1,-,[4,2]); then place h=2 is
skipped because it contains just one job. In h=3 an empty
place is encountered, so the procedure extracts a job from the
next not empty place, here place 4 containing the FIFO list
[4,2], and reinserts it there; after this step the final feasible
sequence (3,1,4,2) is obtained.
It is easy to verify that the iterated application of the extract-
reinsert operator in (3) to compute σp+v in the case of the first
example where σp=(1,2,3,4), σq=(2,3,1,4), and
v={(1,2),(2,-1),(3,-1)} directly gives the target sequence σq
since π0=(1,2,3,4), π1=(-,2,[3,1],4), π2=(2,-,[3,1],4) and finally
π3=(2,3,1,4).

A velocity v can be summed to another velocity v’
producing a new velocity w. This is a different sum operator
(velocity sum) that generates the resulting velocity as the
union of the moves in v and v’. Any job can appear only once
in the set of pseudo-moves defining a velocity; therefore, if v
and v’ include respectively (j, d) and (j, d’), then the resulting

sum w must include the pseudo-insertion move (j, d+d’). Note
that if d+d’=0 the move is removed from the list.

Finally, a velocity v can be multiplied by a real positive
constant c (constant-velocity multiplication) generating a new
velocity w=c·v. We devised the following constant-velocity
multiplication rule according to which the constant c modifies
the displacement values of the pseudo-moves included in
v={(j1,d1),...,(js,ds)}; in particular, this rule produces a velocity
w={(j1, c·d1),...,(js, c·ds)}.

C. The overall DPSO algorithm

The very high level structure of the developed DPSO
algorithm is given in Fig. 3. In the following we will describe
each step in the detail.

Initialization;
While <termination condition not met>
{
 For each particle p belonging to P
 {
 Update particle velocity;
 Update particle position;
 Compute particle fitness;
 }
 Intensification phase;
 Update best references;
}

Fig. 3: The overall D-PSO algorithm.

Initialization. An initial sequence 0

iσ , i=1,..., m, (i.e., an

initial solution 0
ix) is assigned to each of the m particles. In

particular, we use three different constructive heuristics, the
earliest due date (EDD), the shortest processing time (SPT),
and the apparent tardiness cost with setups (ATCS) to
generate three different starting sequences. Then, a set of 0

iv ,
i=1,...,m initial velocities is randomly generated and
associated with the particles. Finally, the initial position for
each particle i is produced first randomly selecting one among
the first three starting sequences and then summing the
correspondent initial velocity 0

iv .

Velocity and position update. At iteration k, each particle i
first computes the following components: the inertial velocity
(iv), the directed to personal best velocity (pv), and the
directed to global best velocity (gv), according to the
following equations:
 1−⋅= k

i
k
i vwiv (3)

)(1
11

−−⋅= k
ii

k
i prcpv σ (4)

)(1
22

−−⋅= k
i

k
i grcgv σ (5)

where r1 and r2 are independent random numbers extracted
from U[0,1].

Then the particle velocity at iteration k is updated with a
procedure that separately sums to the current particle position

1 3 4 2
1 2 3 4

1 3 4 2

pull

1 3 4 2

pull

each velocity component one at a time (in the iv, pv, gv order),
thus moving the particle through a set of intermediate
sequences. For example, denoting with is the intermediate
sequences, we must execute three sums, k

i
k
i ivis += −1

1 σ ,
k
ipvisis += 12 and k

i
k
i gvis += 2σ in order to update the

position of a particle.
Finally, the schedule k

ix associated with the updated

particle position k
iσ is determined by a straightforward

timetable procedure, and the fitness)(k
ixZ is computed. Note

that if the velocity for a particle becomes null then it is
reinitialized by a random restart.

Intensification phase. After all the particles have updated their
position and computed their fitness at an iteration k, an
intensification phase is performed consisting of a local search
(LS) exploration that starts from the best solution found by the
particles in the current iteration. We adopt a stochastic LS (S-
LS) algorithm similar to the one in [4], which in turn is based
on a variant of the variable neighbourhood search (VNS) [31].

The S-LS algorithm performs a random neighbourhood
exploration allowing an alternation of random insert and swap
moves with a maximum number of random restarts bounded
by n/5; thus the overall complexity of the LS algorithm is
O(n3). After the intensification phase, the solution obtained by
the S-LS algorithm is substituted to the starting k

ix * for the
particle i*, whose position and fitness are updated accordingly.

Update of the best references. After the completion of the
intensification phase, the global and the personal best position
for the particles may be updated.

V. EXPERIMENTAL ANALYSIS OF THE ALGORITHM
We coded the DPSO algorithm in C++ and implemented it

on a Pentium IV, 2.8 GHz, 512 Mb PC. We extensively tested
the behaviour of the proposed DPSO through an experimental
campaign mainly based on the benchmark due to Cicirello [5],
which is available on the web at
http://www.cs.drexel.edu/~cicirello/benchmarks.html.
This benchmark is made of a set of 120 STWTSDS problem
instances with 60 jobs. We compared our DPSO algorithm
with the following three sets of best reference solutions for the
considered benchmark: (a) a set including the overall
aggregated best known results, denoted with OBK, mostly
composed by the solutions yielded by the SA, GA and TS
algorithms in [14] with the addition of few best solutions from
the ant colony optimization (ACO) algorithm in [12], and
taking also into account the best solutions from the GA in
[13]; (b) the set of best results obtained by the ACO algorithm
in [12], denoted with ACO-LJ; (c) the most recent set of the
best results produced by the authors with an ACO approach
denoted with ACO-AP [15].

During all the experimental campaign, we set the number
of particles m=120 and we adopted the same termination
criterion used in [14] fixing the maximum number of fitness
function evaluation = 20,000,000. After a preliminary

experiment campaign we also fixed c1=1.5, c2=2.0 and w=1.0.
Please note that these parameters seemed to be not much
sensitive, as also other configurations gave results statistically
not different. We executed 10 runs for each instance and then
we computed the best results, summarized in Table 1. This
table reports the average percentage deviations (Avg dev), the
related 95% confidence (Conf), the percentage number of
improved (Impr sol) and identical (Ident sol) solutions found
by DPSO with respect to the three sets of reference solutions.
Table 1 clearly shows that the best DPSO solutions
outperform on the average the OBK and the ACO-LJ ones,
while they are substantially equivalent to the ones in ACO-AP
approach.

 Avg dev Conf Impr sol Ident sol
OBK -2.80 1.72 70.83 18.33

ACO-LJ -4.60 1.91 65.00 13.33
ACO-AP -0.24 1.42 31.67 26.67

Table 1: The best results of the DPSO with respect to three solution sets (%)

The dominance of DPSO in the first two comparisons, also
witnessed by the 95% confidence results, was also confirmed
by statistically significance tests.

At the website http://www.discovery.dist.unige.it/
DPSO_best.html the complete best results for each instance
can be found with every objective function value and
sequence of jobs.

A. The evaluation of the importance of the swarm intelligence
mechanisms

In order to finally verify the effectiveness of using swarm
intelligence mechanisms in exploring the solution space, we
developed a modified version of our DPSO, denoted as
Random Particle Search (RPS), removing from the algorithm
every memory and particle interaction mechanism. The RPS,
starting from the set of solutions initially associated with the
m particles, executes at each iteration a random position
update for each particle and an intensification step with the S-
LS for the particle position correspondent to the best solution
found in the iteration. Differently from the DPSO, the RPS
updates the particle positions computing a random velocity as
follows: for each particle dimension, i.e., job j in the sequence
of the associated solution, a pseudo-insertion move (j, d) is
determined by stochastically generating the job displacement
d from a normal distribution N(µ, σ2), with mean µ=0 and
standard deviation σ fixed as algorithm parameter. The
developed RPS can be viewed as a sort of multiple iterated
local search method that uses the velocity concept from DPSO
in order to perturb the current solutions, but that does not
include any “swarm” interaction mechanism as well as PSO
memory structures (personal or global best). We tested three
RPS configurations characterized by a different value for the
parameter σ, fixing σ � {4, 6, 18}, executing 10 runs for each
configuration on the Cicirello’s benchmark, then computing
for each instance the best average result over the three RPS
configurations. Then we compared the RPS results with the
average DPSO solutions finding that the RPS produced an

average percentage deviation from the DPSO of 12.15%, with
a 95% confidence of 9.45%. From such results RPS appears
dominated by the DPSO and this fact clearly confirms the
fundamental role of the DPSO swarm intelligence
mechanisms.

VI. CONCLUSIONS
In this paper we describe a new DPSO algorithm that we

used to face the NP-hard STWTSDS problem. To our best
knowledge, this should be the first application of a discrete
PSO metaheuristic to this class of scheduling problem.
Differently from previous approaches in the literature where
PSO has been applied to scheduling problems, our DPSO
adopts a discrete model both for particles and velocities,
respectively corresponding to job sequences and list of so-
called pseudo-insertion moves.

The experimental tests performed on the Cicirello’s
benchmark demonstrate the competitiveness of the proposed
DPSO; in particular, we can highlight the ability of the DPSO
of generating excellent average results, as well as its very
limited dependency from the parameter values, which makes
the algorithm tuning not critical. Finally, we showed the
effectiveness of this swarm intelligence method, since turning
off interaction and memory mechanisms of agents the
performance of the algorithm deteriorates significantly.

REFERENCES
[1] Wisner, J., & Siferd, S. (1995). A Survey of U.S. Manufacturing

Practices in Make-to-Order Machine Shops. Production and Inventory
Management Journal , 36, 1-7.

[2] Rubin, P., & Ragatz, G. (1995). Scheduling in a sequence dependent
setup environment with genetic search. Computers & Operations
Research , 22, 85–99.

[3] Pinedo, M. (1995). Scheduling: Theory, Algorithms, and Systems.
Englewood Cliffs, NJ: Prentice Hall.

[4] Tasgetiren, M., Sevkli, M., Liang, Y., & Gencyilmaz, G. (2004). Particle
swarm optimization algorithm for single machine total weighted
tardiness problem. Proceedings of the IEEE congress on evolutionary
computation, vol.2, p. 1412–1419. Portland.

[5] Cicirello, V. (2003). Weighted tardiness scheduling with sequence-
dependent setups: a benchmark library. Carnegie Mellon University,
USA, Technical Report of Intelligent Coordination and Logistics
Laboratory, Robotics Institute.

[6] Lawler, E. (1997). A ‘pseudopolynomial’ algorithm for sequencing jobs
to minimize total tardiness. Annals of Discrete Mathematics , 1, p. 331–
342.

[7] Lee, Y., Bhaskaran, K., & Pinedo, M. (1997). A heuristic to minimize
the total weighted tardiness with sequence-dependent setups. IIE
Transaction , 29, 45-52.

[8] Potts, C., & van Wassenhove, L. (1991). Single machine tardiness
sequencing heuristics. IIE Transactions , 23, 346–354.

[9] França, P., Mendes, A., & Moscato, P. (2001). A memetic algorithm for
the total tardiness single machine scheduling problem. European Journal
of Operational Research (132), 224-242.

[10] Anghinolfi, D., & Paolucci, M. (2007). Parallel machine total tardiness
scheduling with a new hybrid metaheuristic approach. Computers &
Operations Research (34), 3471-3490.

[11] Cicirello, V., & Smith, S. (2005). Enhancing stochastic search
performance by value-based randomization of heuristics. Journal of
Heuristics (11), 5–34.

[12] Liao, C., & Juan, H. (2007). An ant colony optimization for single-
machine tardiness scheduling with sequence-dependent setups.
Computers & Operations Research (34), 1899-1909.

[13] Cicirello, V. (2006). Non-Wrapping Order Crossover: An Order
Preserving Crossover Operator that Respects Absolute Position.

Proceeding of GECCO’06 Conference, (p. 1125-1131). Seattle,
Washington, USA.

[14] Lin, S., & Ying, K. (2006). Solving single-machine total weighted
tardiness problems with sequence-dependent setup times by meta-
heuristics. The International Journal of Advanced Manufacturing
Technology .

[15] Anghinolfi, D., & Paolucci, M. (2007). A new ant colony optimization
approach for the single machine total weighted tardiness scheduling
problem. accepted for publication on International Journal of Operations
Research .

[16] Kennedy, J., & Eberhart, R. (2001). Swarm Intelligence. San Francisco:
Morgan Kaufmann Publishers.

[17] Kennedy, J., & Eberhart, R. (1995). Particle Swarm Optimization.
Proceeding of the 1995 IEEE International Conference on Neural
Network (p. 1942-1948). IEEE Press.

[18] Abraham, A., Guo, H., & Liu, H. (2006). Swarm Intelligence:
Foundations, Perspectives and Applications. Swarm Intelligence in Data
Mining, Studies in Computational Intelligence (series) .

[19] Pang, W., Wang, K., Zhou, C., & Dong, L.-J. (2004). Fuzzy discrete
particle swarm optimization for solving traveling salesman problem.
Proceedings of the 4th International Conference on Computer and
Information Technology (p. 796 – 800). IEEE CS Press.

[20] Chen, A., Yang, G., & Wu, Z. (2006). Hybrid discrete particle swarm
optimization algorithm for capacitated vehicle routing problem. Journal
of Zhejiang Univ. SCIENCE A (7), 607-614.

[21] Lian, Z., Gu, X., & Jiao, B. (2006). A similar particle swarm
optimization algorithm for permutation flowshop scheduling to minimize
makespan. Applied Mathematics and Computation (175), 773-785.

[22] Lian, Z., Gu, X., & Jiao, B. (2006). A similar particle swarm
optimization algorithm for job-shop scheduling to minimize makespan.
Applied Mathematics and Computation (183), 1008-1017.

[23] Allahverdi, A., & Al-Anzi, F. (2006). A PSO and a Tabu search
heuristics for the assembly scheduling problem of the two-stage
distributed database application. Computers & Operations Research
(33), 1056–1080.

[24] Parsopoulos, K., & Vrahatis, M. (2006). Studying the Performance of
Unified Particle Swarm Optimization on the Single Machine Total
Weighted Tardiness Problem. Lecture Notes in Artificial Intelligence
(4304), 760-769.

[25] Kennedy, J., & Eberhart, R. (1997). A discrete binary version of the
particle swarm algorithm. Proceedings of the International Conference
on Systems, Man, and Cybernetics. vol. 5, p. 4104–4108. IEEE Press.

[26] Liao, C.-J., Tseng, C.-T., & Luarn, P. (2007). A discrete version of
particle swarm optimization for flowshop scheduling problems.
Computers & Operations Research (34), 3099-3111.

[27] Tasgetiren, M., Liang, Y.-C., Sevkli, M., & Gencyilmaz, G. (2007). A
particle swarm optimization algorithm for makespan and total flowtime
minimization in the permutation flowshop sequencing problem.
European Journal of Operational Research (177), 1930-1947.

[28] Bean, J. (1994). Genetic algorithm and random keys for sequencing and
optimization. ORSA Journal on Computing (6), 154-160.

[29] Hu, X., Eberhart, R., & Shi, Y. (2003). Swarm intelligence for
permutation optimization: a case study of n-queens problem.
Proceedings of the 2003 IEEE Conference on Swarm Intelligence
Symposium (SIS '03) (p. 243-246). IEEE Press.

[30] Clerc, M. (2004). Discrete Particle Swarm Optimization. Onwubolu GC,
Babu BV (Eds), New Optimization Techniques in Engineering , 219-
240.

[31] Mladenovic, N., & Hansen, P. (1997). Variable Neighbourhood Search.
Computers & Operations Research (24), 1097-1100.

