
 

  
Abstract—In this paper we present a multi-agent search 

technique to face the NP-hard single machine total weighted 
tardiness scheduling problem in presence of sequence-dependent 
setup times. The search technique is called Discrete Particle 
Swarm Optimization (DPSO): differently from previous 
approaches the proposed DPSO uses a discrete model both for 
particle position and velocity and a coherent sequence metric. 
We tested the proposed DPSO over a benchmark available 
online. The results obtained show the competitiveness of our 
DPSO, which is able to outperform the best known results for the 
benchmark, and the effectiveness of the DPSO swarm 
intelligence mechanisms. 
 

Index Terms—Particle Swarm Optimization, Swarm 
Intelligence, Scheduling 
 

I. INTRODUCTION 
In this paper we propose a new DPSO approach to face the 

single machine total weighted tardiness scheduling with 
sequence-dependent setup times (STWTSDS) problem. 
Scheduling with performance criteria involving due dates, 
such as (weighted) total tardiness or total earliness and 
tardiness (E-T), and that takes into account sequence-
dependent setups, is a reference problem in many real 
industrial contexts. Meeting due dates is in fact recognized as 
the most important objective in surveys on manufacturing 
practise, e.g., in [1]. The objective of minimizing the total 
weighted tardiness has been the subject of a very large amount 
of literature on scheduling even if sequence-dependent setups 
have not been so frequently considered. Setups usually 
correspond to preparing the production resources (e.g., the 
machines) for the execution of the next job, and when the 
duration of such operations depends on the type of last 
completed job, the setups are called sequence-dependent. The 
presence of sequence-dependent setups greatly increases the 
problem difficulty, since it prevents the application of 
dominance conditions used for simpler tardiness problems [2]. 
The choice of the STWTSDS problem as reference application 
for the proposed DPSO approach has then two main 
motivations: first the fact that the solution of single machine 
problems is often required even in more complex 
environments [3], and second the absence, to the best authors’ 
knowledge, of any other DPSO approach in literature for the 
 

 

STWTSDS problem. Regarding the latter point, note that the 
approach in [4] seems to be the only previous DPSO 
application to the single machine total weighted tardiness 
(STWT) problem. 

The rest of the paper is organized as follows. Section 2 
introduces a formal problem definition and provides a general 
review of the relevant literature for it. Section 3 illustrates the 
basic aspects of the PSO algorithm, analysing in particular the 
DPSO approaches previously proposed in the literature. 
Section 4 then describes the proposed DPSO approach, 
discussing how it can be applied to the STWTSDS problem 
and highlighting the new features introduced. Section 5 
presents the experimental campaign performed, which is 
mainly based on the benchmark set generated by Cicirello in 
[5] and available on the web. Finally, Section 6 draws some 
conclusions. 

II. THE STWTSDS PROBLEM 
The STWTSDS problem corresponds to the scheduling of n 

independent jobs on a single machine. All the jobs are 
released simultaneously, i.e., they are ready at time zero, the 
machine is continuously available and it can process only one 
job at a time. For each job j=1,..., n, the following quantities 
are given: a processing time pj, a due date dj and a weight wj. 
A sequence-dependent setup time sij must be waited before 
starting the processing of job j if it is immediately sequenced 
after job i. The tardiness of a job j is defined as Tj=max(0, Cj-
dj), being Cj the job j completion time. The scheduling 
objective is the minimization of the total weighted tardiness 

expressed as ∑ =

n

j jjTw
1

. This problem, denoted as 

1/sij/∑wjTj, is strongly NP-hard since it is a special case of the 
1//∑wjTj  that has been proven to be strongly NP-hard in [6]. 
In the literature both exact algorithms and heuristic algorithms 
have been proposed for the STWTSDS problem or for a 
slightly different version disregarding the job weights. 
However, since only instances of small dimensions can be 
solved by exact approaches, recent research efforts have been 
focused on the design of heuristics. The apparent tardiness 
cost with setups (ATCS) heuristic [7] is currently the best 
constructive approach for the STWTSDS problem. 
Constructive heuristics require a small computational effort, 
but they are generally outperformed by improvement 
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approaches, based on local search algorithms, and 
metaheuristics, which on the other hand are much more 
computational time demanding. The effectiveness of such 
approaches has been largely demonstrated: for example, Potts 
and van Wassenhove [8] show as simple pair-wise interchange 
methods outperform dispatching rules for the STWT problem, 
as well as more recently constructive heuristics appear 
dominated by a memetic algorithm in [9] or by a hybrid 
metaheuristic in [10] where a similar parallel machine case is 
considered. The effectiveness of stochastic search procedures 
for the STWTSDS is shown in [11], where the authors 
compare a value-biased stochastic sampling (VBSS), a VBSS 
with hill-climbing (VBSS-HC) and a simulated annealing 
(SA), to limited discrepancy search (LDS) and heuristic-
biased stochastic sampling (HBSS) on a 120 benchmark 
problem instances for the STWTSDS problem defined by 
Cicirello [5]. The literature about applications of 
metaheuristics to scheduling is quite extended. In [12] an ant 
colony optimization (ACO) algorithm for the STWTSDS is 
proposed, which is able to improve about 86% of the best 
known results for the Cicirello’s benchmark previously found 
by stochastic search procedures in [11]. Recently the 
Cicirello’s best known results have been further independently 
improved in [13] by means of a GA approach, in [14] with 
three SA, GA and tabu search (TS) algorithms, and in [15] 
using an ACO approach; in particular, the new set of best 
known results established by Lin and Ying [14], which 
improved more than 71% of the previous best known 
solutions, was lastly updated by the ACO by Anghinolfi and 
Paolucci [15] that was able to improve 72.5% of the Lin and 
Ying solutions. 

III. OVERVIEW OF THE BASIC PSO ALGORITHM AND ITS 
DISCRETE VARIANT 

Particle Swarm Optimization (PSO) algorithm is a recent 
metaheuristic approach motivated by the observation of the 
social behaviour of composed organisms, such as bird 
flocking and fish schooling, and it tries to exploit the concept 
that the knowledge to drive the search for optimum is 
amplified by social interaction. PSO executes a population-
based search procedure in which the exploring agents, called 
particles, adjust their positions during time (the particles fly) 
according not only to their own experience, but also to the 
experience of other particles: in particular, a particle may 
modify its position with a velocity that in general includes a 
component moving the particle towards the best position so 
far achieved by the particle itself to take into account its 
personal experience, and a component moving the particle 
towards the best solution so far achieved by any among a set 
of neighbouring particles (local neighbourhood) or by any of 
the exploring particles (global neighbourhood). PSO is based 
on the Swarm Intelligence (SI) concept [16]. This is a 
particular agent-based modelling technique which mostly 
relies on the cooperation among large number of simple 
agents in order to model an autonomous self-organizing 
system for solving optimization problems. The agents are able 
to exchange information in order to share experiences, and the 

performance of the overall multi-agent system (the swarm) 
emerges from the collection of the simple agents’ interactions 
and actions. PSO has been originally developed for 
continuous nonlinear optimization ( [17]; [18]). The basic 
algorithm for a global optimization problem, corresponding to 
the minimization of a real objective function f(x), uses a 
population (swarm) of m particles. Each particle i of the 
swarm is associated with a position in the continuous n-
dimensional search space, xi=(xi1,…, xin) and with the 
correspondent objective value f(xi) (fitness). For each particle 
i, the best previous position, i.e. the one where the particle 
found the lowest objective value (personal best), and the last 
particle position change (velocity) are recorded and 
represented respectively as pi=(pi1,…, pin) and vi=(vi1,…, vin). 
The position associated with the current smallest function 
value is denoted as g=(g1,…, gn) (global best). Denoting with 

k
ix and k

iv respectively the position and velocity of particle i at 
iteration k of the PSO algorithm, the following equations are 
used to iteratively modify the particles’ velocities and 
positions: 
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where w is the inertia parameter that weights the previous 
particle’s velocity; c1 and c2, respectively called cognitive and 
social parameter, multiplied by two random numbers r1 and r2 
uniformly distributed in [0, 1], are used to weight the velocity 
towards the particle’s personal best, )( k

ii xp − , and the 

velocity towards the global best solution, )( k
ixg − , found so 

far by the whole swarm. The new particle position is 
determined in (2) by adding to the particle’s current position 
the new velocity computed in (1). The PSO parameters that 
must be fixed are the inertia w, the cognitive and social 
parameters c1 and c2, and finally the dimension of the swarm 
m.  

In recent years several studies applying the PSO approach 
to discrete combinatorial optimization problems appeared in 
the literature; however, to the best authors’ knowledge, none 
of them faced the STWTSDS problem. PSO has been applied 
to combinatorial optimization problems, as travelling 
salesman problem (TSP) [19], vehicle routing problem [20], 
and scheduling problems ([4]; [12]; [21]; [22]; [23]; [24]). 
DPSO approaches differ both for the way they associate a 
particle position with a discrete solution and for the velocity 
model used; in particular, we could classify DPSO approaches 
in the literature according to three kinds of solution-particle 
mapping, i.e., binary, real-valued and permutation-based, and 
three kinds of velocity model used, i.e., real-valued, stochastic 
or based on a list of moves. The first DPSO algorithm 
proposed in [25] is characterized by a binary solution 
representation and a stochastic velocity model since it 
associates the particles with n-dimensional binary variables 
and the velocity with the probability for each binary 
dimension to take value one. A variation of this DPSO to face 
flow shop scheduling problems is defined in [26]. A different 
model is used in [4] to develop a PSO algorithm for the 
STWT problem and in [27] for the total flowtime 



 

minimization in permutation flow shop problems: using a 
technique similar to the random key representation [28], real 
values are associated with the particle dimensions to represent 
the job place in the scheduling sequence and the smallest 
position value (SPV) rule is exploited to transform the particle 
positions into job permutations. Permutation-based solution-
particle mappings are used in [29] for the n-queens problem 
together with a stochastic velocity model, representing the 
probability of swapping items between two permutation 
places, and a mutation operator, consisting of a random swap 
executed whenever a particle coincides with the local (global) 
best one. 

The velocity models used in all the DPSO approaches 
above mentioned are either stochastic or real-valued. To the 
best authors’ knowledge the unique example of velocity 
model based on a list of moves can be found in the DPSO 
approach for the TSP in [30]. The reason why this kind of 
model has not been investigated in the scheduling literature 
may be explained by the main difficulty of defining new 
appropriate sum and multiplication operators for equations (1) 
and (2) to make them work in a discrete solution space. 
Nevertheless, in the following section we propose a new 
DPSO approach to single machine scheduling based on both a 
permutation solution-particle representation and on a list-of-
moves velocity model. 

IV. THE PROPOSED DPSO APPROACH 
To pursuit our purpose we will need to redefine all the 

arithmetical operators involved in equations (1) and (2). This 
redefinition will lead in general to build unfeasible sequences 
(pseudo-sequences) that will be fixed and converted in 
feasible sequences with a procedure called sequence 
completion procedure. 

Let us first introduce some notation. In general, a solution 
x to the problem of scheduling n independent jobs on a single 
machine is associated with a sequence σ=([1],...,[n]). In 
addition we denote with φσ:{1,..., n}→{1,..., n}, the mapping 
between the places in a sequence σ and the indices of the 
sequenced jobs; for example, if job j is sequenced in the h-th 
place of σ we have j= φσ(h). In the proposed DPSO we 
consider a set of m particles; each particle i is associated with 
a sequence σi, i.e., a schedule xi, and it has a fitness given by 
the cost value Z(xi). Thus, the space explored by the flying 
particles is the one of the sequences. In the following we 
introduce a metric for such a space, called sequence metric, 
that is, a set of operators to compute velocities and to update 
particles’ positions consistently. 
 
A. The particle velocity and the sequence metric operators 

Given a pair of particles p and q, we define the distance 
between them as the difference between the associated 
sequences (position difference), i.e., σq-σp, which corresponds 
to a list of moves that we call pseudo-insertion (PI) moves. 
We denote a PI move as (j, d), where d is the integer 
displacement that must be applied to job j to direct the particle 
p toward q. Roughly speaking, assuming for example that 
j=φσ(h), a positive displacement d corresponds to a towards-
right move that extracts job j from its current place h and 

reinserts it in place min(h+d, n) in the sequence, so generating 
a new sequence σ’ such that j=φσ’(min(h+d, n)), and a 
corresponding solution x’; analogously, a negative 
displacement -d corresponds to a towards-left extraction and 
reinsertion move that generates a new sequence such that 
j=φσ’(max(h-d, 0)). The difference between the positions of 
two particles p and q defines a velocity v, which consequently 
is a set of PI moves; then, applying the PI moves in v to p we 
can move this particle to the position of particle q. The 
following example would simply illustrate this concept. Let 
the number of jobs n=4 and the sequences corresponding to 
the positions of two particles p and q respectively σp=(1,2,3,4) 
and σq=(2,3,1,4); then, the velocity associated with the 
difference between the two positions is 
v=σq-σp={(1,2),(2,-1),(3,-1)}; here the PI move (1, 2) denotes 
that job 1 must be delayed (moved towards-right) of 2 places 
in the sequence to direct particle p towards q. Note that a 
velocity can include at most a single PI move for a given job. 
The reason why we denote as “pseudo-insertion” such kind of 
moves is that, as detailed in the following, in general the rule 
used to apply the PI moves in a velocity to a sequence may 
fail to produce a feasible sequence, but it may produce a so-
called pseudo-sequence, and we need to introduce a final 
sequence completion procedure to correctly implement 
equation (2) in the sequence metric. 
The position-velocity sum operator applies one PI move 
composing the velocity at a time, first to the initial sequence 
and then to the pseudo-sequences successively obtained, 
hereafter denoted by π. 
 
B. The sequence completion procedure 

In general, the pseudo-sequences produced do not 
correspond to feasible sequences since some sequence places 
may be left empty whereas some others may contain a list of 
jobs. If, for example, we apply the move (1,2) to σp=(1,2,3,4), 
we obtain the pseudo-sequence π=(-,2,[3,1],4), where “- “ 
denotes that no job is assigned to the first place of π, whereas 
[3,1] represents the ordered set of jobs assigned to the third 
place of π. Let us denote with π(h) the ordered set of items in 
the h-th place of the pseudo-sequence π; with pull(s) the 
function that extracts the first element from an ordered set s, 
and with push(i, s) the function that inserts the element i at the 
bottom of the set s. Then, in order to convert a pseudo-
sequence into a feasible sequence, the sequence completion 
procedure manages π(h) as a first-in-first-out (FIFO) list, as 
reported in Fig. 1. 

As an example, the behaviour of such a procedure for a 
pseudo-sequence π=([1,3],-,-,[4,2]) is shown in Fig. 2. 



 

 
Input: π a pseudo-sequence 
Output: σ a feasible sequence 
for each h=1,...,n  
{ 
    if |π(h)|=1 skip; 
    else if |π(h)|=0  
    { 
        repeat 
            k=h+1; 
        while k<n and |π(k)|=0 
        π(h)=pull(π(k)); 
    } 
    else if |π(h)|>1 
    { 
        while |π(h)|>1 
            push(pull(π(h), π(h+1)); 
    } 
} 
σ=π; 

 
Fig. 1: The sequence completion procedure. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: An example of sequence completion procedure execution. 
 

The procedure considers one place at a time of π starting 
from the first one on the left; since an ordered set of jobs is 
encountered in place h=1, then the first job is extracted and 
reinserted in the first following empty position (h=2), thus, the 
pseudo-sequence is updated as (3,1,-,[4,2]); then place h=2 is 
skipped because it contains just one job. In h=3 an empty 
place is encountered, so the procedure extracts a job from the 
next not empty place, here place 4 containing the FIFO list 
[4,2], and reinserts it there; after this step the final feasible 
sequence (3,1,4,2) is obtained. 
It is easy to verify that the iterated application of the extract-
reinsert operator in (3) to compute σp+v in the case of the first 
example where σp=(1,2,3,4), σq=(2,3,1,4), and 
v={(1,2),(2,-1),(3,-1)} directly gives the target sequence σq 
since π0=(1,2,3,4), π1=(-,2,[3,1],4), π2=(2,-,[3,1],4) and finally 
π3=(2,3,1,4). 

A velocity v can be summed to another velocity v’ 
producing a new velocity w. This is a different sum operator 
(velocity sum) that generates the resulting velocity as the 
union of the moves in v and v’. Any job can appear only once 
in the set of pseudo-moves defining a velocity; therefore, if v 
and v’ include respectively (j, d) and (j, d’), then the resulting 

sum w must include the pseudo-insertion move (j, d+d’). Note 
that if d+d’=0 the move is removed from the list.  

Finally, a velocity v can be multiplied by a real positive 
constant c (constant-velocity multiplication) generating a new 
velocity w=c·v. We devised the following constant-velocity 
multiplication rule according to which the constant c modifies 
the displacement values of the pseudo-moves included in 
v={(j1,d1),...,(js,ds)}; in particular, this rule produces a velocity 
w={(j1, c·d1),...,(js, c·ds)}. 
 
C. The overall DPSO algorithm  

The very high level structure of the developed DPSO 
algorithm is given in Fig. 3. In the following we will describe 
each step in the detail. 
 

Initialization; 
While <termination condition not met> 
{ 
    For each particle p belonging to P 
    { 
        Update particle velocity; 
        Update particle position; 
        Compute particle fitness; 
    }  
    Intensification phase; 
    Update best references; 
} 
 

Fig. 3: The overall D-PSO algorithm. 
 
Initialization. An initial sequence 0

iσ , i=1,..., m, (i.e., an 

initial solution 0
ix ) is assigned to each of the m particles. In 

particular, we use three different constructive heuristics, the 
earliest due date (EDD), the shortest processing time (SPT), 
and the apparent tardiness cost with setups (ATCS) to 
generate three different starting sequences. Then, a set of 0

iv , 
i=1,...,m initial velocities is randomly generated and 
associated with the particles. Finally, the initial position for 
each particle i is produced first randomly selecting one among 
the first three starting sequences and then summing the 
correspondent initial velocity 0

iv .  
 
Velocity and position update. At iteration k, each particle i 
first computes the following components: the inertial velocity 
(iv), the directed to personal best velocity (pv), and the 
directed to global best velocity (gv), according to the 
following equations: 
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where r1 and r2 are independent random numbers extracted 
from U[0,1]. 

Then the particle velocity at iteration k is updated with a 
procedure that separately sums to the current particle position 
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each velocity component one at a time (in the iv, pv, gv order), 
thus moving the particle through a set of intermediate 
sequences. For example, denoting with is the intermediate 
sequences, we must execute three sums, k

i
k
i ivis += −1

1 σ , 
k
ipvisis += 12  and k

i
k
i gvis += 2σ  in order to update the 

position of a particle. 
Finally, the schedule k

ix associated with the updated 

particle position k
iσ  is determined by a straightforward 

timetable procedure, and the fitness )( k
ixZ  is computed. Note 

that if the velocity for a particle becomes null then it is 
reinitialized by a random restart. 
 
Intensification phase. After all the particles have updated their 
position and computed their fitness at an iteration k, an 
intensification phase is performed consisting of a local search 
(LS) exploration that starts from the best solution found by the 
particles in the current iteration. We adopt a stochastic LS (S-
LS) algorithm similar to the one in [4], which in turn is based 
on a variant of the variable neighbourhood search (VNS) [31]. 

The S-LS algorithm performs a random neighbourhood 
exploration allowing an alternation of random insert and swap 
moves with a maximum number of random restarts bounded 
by n/5; thus the overall complexity of the LS algorithm is 
O(n3). After the intensification phase, the solution obtained by 
the S-LS algorithm is substituted to the starting k

ix *  for the 
particle i*, whose position and fitness are updated accordingly. 
 
Update of the best references. After the completion of the 
intensification phase, the global and the personal best position 
for the particles may be updated. 

V. EXPERIMENTAL ANALYSIS OF THE ALGORITHM 
We coded the DPSO algorithm in C++ and implemented it 

on a Pentium IV, 2.8 GHz, 512 Mb PC. We extensively tested 
the behaviour of the proposed DPSO through an experimental 
campaign mainly based on the benchmark due to Cicirello [5], 
which is available on the web at 
http://www.cs.drexel.edu/~cicirello/benchmarks.html.  
This benchmark is made of a set of 120 STWTSDS problem 
instances with 60 jobs. We compared our DPSO algorithm 
with the following three sets of best reference solutions for the 
considered benchmark: (a) a set including the overall 
aggregated best known results, denoted with OBK, mostly 
composed by the solutions yielded by the SA, GA and TS 
algorithms in [14] with the addition of few best solutions from 
the ant colony optimization (ACO) algorithm in [12], and 
taking also into account the best solutions from the GA in 
[13]; (b) the set of best results obtained by the ACO algorithm 
in [12], denoted with ACO-LJ; (c) the most recent set of the 
best results produced by the authors with an ACO approach 
denoted with ACO-AP [15]. 

During all the experimental campaign, we set the number 
of particles m=120 and we adopted the same termination 
criterion used in [14] fixing the maximum number of fitness 
function evaluation = 20,000,000. After a preliminary 

experiment campaign we also fixed c1=1.5, c2=2.0 and w=1.0. 
Please note that these parameters seemed to be not much 
sensitive, as also other configurations gave results statistically 
not different. We executed 10 runs for each instance and then 
we computed the best results, summarized in Table 1. This 
table reports the average percentage deviations (Avg dev), the 
related 95% confidence (Conf), the percentage number of 
improved (Impr sol) and identical (Ident sol) solutions found 
by DPSO with respect to the three sets of reference solutions. 
Table 1 clearly shows that the best DPSO solutions 
outperform on the average the OBK and the ACO-LJ ones, 
while they are substantially equivalent to the ones in ACO-AP 
approach. 

 Avg dev Conf Impr sol  Ident sol  
OBK -2.80 1.72 70.83 18.33

ACO-LJ -4.60 1.91 65.00 13.33
ACO-AP -0.24 1.42 31.67 26.67

 
Table 1: The best results of the DPSO with respect to three solution sets (%) 
 
The dominance of DPSO in the first two comparisons, also 
witnessed by the 95% confidence results, was also confirmed 
by statistically significance tests. 

At the website http://www.discovery.dist.unige.it/ 
DPSO_best.html the complete best results for each instance 
can be found with every objective function value and 
sequence of jobs. 
 
A. The evaluation of the importance of the swarm intelligence 
mechanisms 

In order to finally verify the effectiveness of using swarm 
intelligence mechanisms in exploring the solution space, we 
developed a modified version of our DPSO, denoted as 
Random Particle Search (RPS), removing from the algorithm 
every memory and particle interaction mechanism. The RPS, 
starting from the set of solutions initially associated with the 
m particles, executes at each iteration a random position 
update for each particle and an intensification step with the S-
LS for the particle position correspondent to the best solution 
found in the iteration. Differently from the DPSO, the RPS 
updates the particle positions computing a random velocity as 
follows: for each particle dimension, i.e., job j in the sequence 
of the associated solution, a pseudo-insertion move (j, d) is 
determined by stochastically generating the job displacement 
d from a normal distribution N(µ, σ2), with mean µ=0 and 
standard deviation σ fixed as algorithm parameter. The 
developed RPS can be viewed as a sort of multiple iterated 
local search method that uses the velocity concept from DPSO 
in order to perturb the current solutions, but that does not 
include any “swarm” interaction mechanism as well as PSO 
memory structures (personal or global best). We tested three 
RPS configurations characterized by a different value for the 
parameter σ, fixing σ � {4, 6, 18}, executing 10 runs for each 
configuration on the Cicirello’s benchmark, then computing 
for each instance the best average result over the three RPS 
configurations. Then we compared the RPS results with the 
average DPSO solutions finding that the RPS produced an 



 

average percentage deviation from the DPSO of 12.15%, with 
a 95% confidence of 9.45%. From such results RPS appears 
dominated by the DPSO and this fact clearly confirms the 
fundamental role of the DPSO swarm intelligence 
mechanisms. 

VI. CONCLUSIONS 
In this paper we describe a new DPSO algorithm that we 

used to face the NP-hard STWTSDS problem. To our best 
knowledge, this should be the first application of a discrete 
PSO metaheuristic to this class of scheduling problem. 
Differently from previous approaches in the literature where 
PSO has been applied to scheduling problems, our DPSO 
adopts a discrete model both for particles and velocities, 
respectively corresponding to job sequences and list of so-
called pseudo-insertion moves. 

The experimental tests performed on the Cicirello’s 
benchmark demonstrate the competitiveness of the proposed 
DPSO; in particular, we can highlight the ability of the DPSO 
of generating excellent average results, as well as its very 
limited dependency from the parameter values, which makes 
the algorithm tuning not critical. Finally, we showed the 
effectiveness of this swarm intelligence method, since turning 
off interaction and memory mechanisms of agents the 
performance of the algorithm deteriorates significantly. 
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